Oxidation of Tris(dimethylamino)phosphine Sulphide to a New Type of Phosphorus-Sulphur Cation

By WILLIAM E. SLINKARD and DEVON W. MEEK* (Department of Chemistry, The Ohio State University, Columbus, Ohio 43210)

ALKYLPHOSPHINE SULPHIDES, $R_3P=S$, reduce Cu^{II} and AuIII ions1-3 and form complexes. With tris(dimethylamino)phosphine sulphide, (Me₂N)₃P=S,4 the novel cation $[(Me_2N)_3P-S-S-P(NMe_2)_3]^{2+}$ is formed by the Cu^{II} or bromine oxidation of (Me₂N)₃P=S.

Dissolution of the blue complex [Cu(MeCN)₄](ClO₄)₂ in liquid (Me₂N)₃P=S at 30°, gives a nearly colourless solution (10 sec.) and white crystals. The i.r. spectrum of these is very similar to that of the original (Me₂N)₃P=S, except that the strong 565 cm.-1 absorption (P=S stretching frequency) is absent and two strong prechlorate bands at ca. 1100 and 625 cm.⁻¹ are present. The prechlorate bands indicate that a cation was formed. The compound is a biunivalent electrolyte in nitromethane and its n.m.r. spectrum shows that all the methyl groups are equivalent and bonded to phosphorus. The J_{P-H} coupling constants and the downfield shift of the methyl doublet are comparable to those observed for [(Me2N)3P-S-Me]+I-. On the basis of the n.m.r. and i.r. spectral data, the analytical data, and the conductivity results, the structure of this new cation is suggested to be $[(Me_2N)_3P-S-S-P(NMe_2)_3]^{2+}$. Such a cation would result from the oxidation of (Me₂N)₃P=S: to the free-radical $[(Me_2N)_3P = \vec{S} \cdot]^+$, followed by rapid coupling. The same species was isolated also as the tribromide salt after bromine oxidation of (Me₂N)₃PS in acetonitrile.†

The above divalent cation also affords an explanation for the bright red crystals, (Me₂N)₃PSCuCl₃, which result from anhydrous copper(II) chloride or Cu(MeCN), Cl, and (Me, N),-P=S. The compound is a 2:2 electrolyte in nitromethane, exhibits a magnetic moment of 2.04 B.M. per copper ion, has an electronic spectrum remarkably similar to squareplanar CuII anions,5 and gives an i.r. spectrum identical to that of the above [(Me₂N)₃P-S-S-P(NMe₂)₃]²⁺ salts. Thus, these red crystals should be formulated as [(Me2N)3PS2P-(NMe₂)₃] [Cu₂Cl₆], containing the known planar [Cu₂Cl₆]²anion, rather than as any copper(II)-(Me2N)2P=S coordination complex. As additional evidence, identical red crystals were prepared directly from [(Me₂N)₃PS₂P(NMe₂)₃]-(ClO₄)₂, anhydrous CuCl₂, and LiCl.

We thank Professor D. H. Busch for a helpful discussion and the National Institutes of Health for financial support.

(Received, December 30th, 1968; Com. 1797.)

⁵ R. D. Willett and O. L. Liles, jun., Inorg. Chem., 1967, 6, 1666.

[†] All the compounds discussed had satisfactory analyses.

D. W. Meek and P. Nicpon, J. Amer. Chem. Soc., 1965, 87, 4951; P. Nicpon, Ph.D. dissertation, The Ohio State University, 1966.
I. M. Keen, J. Chem. Soc., 1965, 5751.
R. A. Potts and A. L. Allred, J. Inorg. Nuclear Chem., 1965, 28, 1479.

⁴ Prepared by a procedure analogous to that described for (H₂N)₃P=S; Inorg. Synth., 1960, 5, 111.