The Photoisomerisation of an 11-Oxo-olean-12-ene¹

By B. W. FINUCANE and J. B. THOMSON*

(Department of Chemistry, University College, Dublin 4, Ireland)

The photochemistry of triterpene ketones has received little attention.2 We report the first† photolysis of a conjugated triterpene ketone and a new example of the few known reactions induced selectively from the π,π^* excited state of $\alpha\beta$ -unsaturated ketones.³

Irradiation[†] of 11-oxo-olean-12-en-3 β -yl acetate (I) in the $\pi \to \pi^*$ absorption band yields 15% (30% based on unrecovered starting material) of a non-ketonic product, m.p. 234—235°, $[\alpha]_D + 110^\circ (CHCl_3)$; $\nu_{max} (KBr)$ 3440 (OH which resists acetylation), 1735, and 1245 cm. $^{-1}$ (OAc) ; τ 9·20—8·66 (7Me), 7.96 (OAc), 5.35 (m, 3-H), and 4.80 (s, 12-H). The molecular formula, C₃₂H₅₀O₃ (mass spectrum), and the spectroscopic data indicate that the photo-product is either the hexacyclic alcohol (III) or its 11,16-cyclo-isomer (cf. ref. 4). That the former structure is correct is shown by the rapid, quantitative formation, under mildly acidic conditions, of a partly conjugated triene (IV), m.p. 198-199°, $[\alpha]_D$ -142° (CHCl3); λ_{max} (MeOH) 265 nm. (ϵ 34,000); the n.m.r. spectrum of which shows only one olefinic proton (s, τ 3.89). Confirmation of the cyclobutanol structure was obtained by oxidative cleavage4,5 of the photo-product with lead tetra-acetate to give 3β -acetoxy-11-oxo-olean-12-en-25-ol (II), m.p. 229—230°, $[\alpha]_D$ +79° (CHCl₃); λ_{max} (MeOH) 248 nm.; τ 9·14—8·63 (7Me), 7·98 (OAc), 6·05 (s, 25- H_2), 5.48 (m, 3-H), and 4.36 (s, 12-H).

We thank Biorex Laboratories Ltd. for financial support.

(Received, February 19th, 1969; Com. 233.)

† The photolactonisation of an iodo-amide containing, but not involving, the 11-oxo-12-ene chromophore has been described: L. Canonica, B. Danieli, P. Manitto, and G. Russo, Gazzetta, 1966, 96, 843.

‡ A 0.003M-solution of (I) in dry, deoxygenated dioxan was irradiated (24 hr.) with an immersed NK 6/20 low-pressure mercury lamp (Quarzlampen, Hanau). The enone (I) is recovered quantitatively after prolonged $n \to \pi^*$ excitation.

¹ Previous paper in this series: R. Ó. Dorchaí, H. E. Rubalcava, J. B. Thomson, and B. Zeeh, *Tetrahedron*, 1968, 24, 5649.

² D. Arigoni, D. H. R. Barton, R. Bernasconi, C. Djerassi, J. S. Mills, and R. G. Wolff, *J. Chem. Soc.*, 1960, 1900; F. Kohen and R. Stevenson, *Chem. and Ind.*, 1966, 1844; J. Fried and J. W. Brown, *Tetrahedron Letters*, 1967, 925; N. Sugiyama, K. Yamada, and H. Aoyama, Chem. Comm., 1968, 1254.

³ Cf. J. A. Saboz, T. Iizuka, H. Wehrili, K. Schaffner, and O. Jeger, Helv. Chim. Acta, 1968, 51, 1362.

⁴ H. Wehrli, M. S. Heller, K. Schaffner, and O. Jeger, Helv. Chim. Acta, 1961, 44, 2162; J. Iriarte, K. Schaffner, and O. Jeger, ibid.,

⁵ M. L. Mihailović, M. Jakovljević, V. Trifunović, R. Vukov, and Z. Ceković, *Tetrahedron*, 1968, 24, 6959.