Synthesis of Perfluorophenyl Metal Complexes using (C₆F₅)₂TlBr as Oxidant By R. S. Nyholm* and P. Royo (William Ramsay and Ralph Forster Laboratories, University College, London, W.C.1) Summary Previously unknown perfluorophenyl-transition-metal complexes have been prepared by a new method involving the oxidation of derivatives of the transition metal in a lower oxidation state with $(C_6F_5)_2$ TlBr, which is reduced to thallium(I) bromide with transfer of two C_6F_5 groups. BISPERFLUOROPHENYLMONOBROMOTHALLIUM(III),¹ which is dimeric, reacts in benzene solution with unco-ordinated (e.g. Hg_2Cl_2) or co-ordinated (e.g. $Ph_3P \rightarrow AuCl$) post-transition-metal halides to produce bis-perfluorophenyl derivatives of an oxidation state two higher than that of the metal in the original compound (except for Hg_2Cl_2) with the precipitation of thallium(I) bromide. $Ph_3P \rightarrow AuCl$ gives $$cis-(C_6F_5)_2ClAu^{III} \leftarrow PPH_3;\dagger$$ $\mathrm{Hg_2Cl_2}$ forms $(C_6F_5)_2\mathrm{Hg}$, described earlier;² and stannous chloride produces $(C_6F_5)_2\mathrm{SnCl_2}$, previously reported by Tatlow et al.³ Nesmeyanov⁴ et al. observed that diphenylthallium(III) bromide gives rise to diphenyltin dichloride (see below). trans-PdCl₂(PPh₃)₂ gives rise to the Pd^{IV} complex (C₆F₅)₂PdCl₂(PPh₃)₂. The properties of these complexes are shown in the Table. Properties of perfluorophenyl metal compounds& | Compound | | Colour | M.p. | $Molec. \\ calc.$ | Weight
found | |--|-----|---------------------|--------------------------|--------------------|--------------------| | $(C_6F_5)_2Hg$ $(C_6F_5)_2SnCl_2$ | | white
colourless | 119°
Lqd. | 535 | 512 | | cis - $(C_6F_5)_2$ Pt(PPh ₃) ₂ | | white | 245°
150° | $\frac{1054}{798}$ | $\frac{1089}{785}$ | | cis - $(C_6F_5)_2$ AuCl(PPh ₃)
C_6F_5 Au(PPh ₃) | • • | white
white | 160° | 626 | 627 | | $(C_6F_5)_{2}RhCl(PPh_3)_{2}$ | • • | yellow-
brown | $^{ m dec.}_{265^\circ}$ | 997 | 787 | | $(C_6F_5)_2PdCl_2(PPh_3)_2$ | • • | pale
vellow | 250°
decomp. | 1036 | 1015 | ^a Satisfactory analytical data were obtained in all cases. Interesting reactions are shown by these C_6F_5 complexes on reduction. Thus when $(C_6F_5)_2$ AuCl(PPh₃) is treated