Synthesis of Perfluorophenyl Metal Complexes using (C₆F₅)₂TlBr as Oxidant

By R. S. Nyholm* and P. Royo

(William Ramsay and Ralph Forster Laboratories, University College, London, W.C.1)

Summary Previously unknown perfluorophenyl-transition-metal complexes have been prepared by a new method involving the oxidation of derivatives of the transition metal in a lower oxidation state with $(C_6F_5)_2$ TlBr, which is reduced to thallium(I) bromide with transfer of two C_6F_5 groups.

BISPERFLUOROPHENYLMONOBROMOTHALLIUM(III),¹ which is dimeric, reacts in benzene solution with unco-ordinated (e.g. Hg_2Cl_2) or co-ordinated (e.g. $Ph_3P \rightarrow AuCl$) post-transition-metal halides to produce bis-perfluorophenyl derivatives of an oxidation state two higher than that of the metal in the original compound (except for Hg_2Cl_2) with the precipitation of thallium(I) bromide. $Ph_3P \rightarrow AuCl$ gives

$$cis-(C_6F_5)_2ClAu^{III} \leftarrow PPH_3;\dagger$$

 $\mathrm{Hg_2Cl_2}$ forms $(C_6F_5)_2\mathrm{Hg}$, described earlier;² and stannous chloride produces $(C_6F_5)_2\mathrm{SnCl_2}$, previously reported by Tatlow et al.³ Nesmeyanov⁴ et al. observed that diphenylthallium(III) bromide gives rise to diphenyltin dichloride

(see below). trans-PdCl₂(PPh₃)₂ gives rise to the Pd^{IV} complex (C₆F₅)₂PdCl₂(PPh₃)₂. The properties of these complexes are shown in the Table.

Properties of perfluorophenyl metal compounds&

Compound		Colour	M.p.	$Molec. \\ calc.$	Weight found
$(C_6F_5)_2Hg$ $(C_6F_5)_2SnCl_2$		white colourless	119° Lqd.	535	512
cis - $(C_6F_5)_2$ Pt(PPh ₃) ₂		white	245° 150°	$\frac{1054}{798}$	$\frac{1089}{785}$
cis - $(C_6F_5)_2$ AuCl(PPh ₃) C_6F_5 Au(PPh ₃)	• •	white white	160°	626	627
$(C_6F_5)_{2}RhCl(PPh_3)_{2}$	• •	yellow- brown	$^{ m dec.}_{265^\circ}$	997	787
$(C_6F_5)_2PdCl_2(PPh_3)_2$	• •	pale vellow	250° decomp.	1036	1015

^a Satisfactory analytical data were obtained in all cases.

Interesting reactions are shown by these C_6F_5 complexes on reduction. Thus when $(C_6F_5)_2$ AuCl(PPh₃) is treated