Double Intramolecular Process in Spirophosphoranes observed by Nuclear Magnetic Resonance Spectroscopy

By D. HOUALLA and R. WOLF

(Laboratoire de Chimie Physique 11, Nouvelle Facults des Sciences, **3** *I-Toulouse, France)*

and D. GAGNAIRE* and J. B. **ROBERT**

(Laboratoire de Chimie Organique Physique du Centre d'Etudes Nucléaires, avenue des Martyrs, 38-Grenoble)

some penta-co-ordinated phosphorus compounds.¹ We lock, at *ca*. 0°, exhibit a well separated doublet [808 Hz. for report here some results concerning spirophosphoranes (I) (I), 801 Hz. for (II)]; each component of the d report here some results concerning spirophosphoranes (I) (I), 801 Hz. for (II)]; each component of the doublet and (II) ,² which also display temperature-dependent n.m.r. corresponds to half a proton; and two sharp, sep spectra. methyl doublets for each compound: $\Delta \delta M$ e 7.5 **Hz**. for (I);

The n.m.r. spectra of (I) and (II) recorded at 100 MHz.

TEMPERATURE-DEPENDENT spectra have been observed for in perdeuteriotoluene with hexamethyldisiloxane as internal some penta-co-ordinated phosphorus compounds.¹ We lock, at *ca*. 0°, exhibit a well separated doublet [808 corresponds to half a proton; and two sharp, separated **10 Hz.** for **(11).** The separation is due to a chemical shift,

For the compound (I), a complex AA'BB'X system is observed, corresponding to the methylene ring protons $= + 12$ Hz.). These two coupling constants are of the same sign. ${}^{3}J(\text{PH}_{\text{A}}) = {}^{3}J(\text{PH}_{\text{A}}) = \pm 15.5 \text{ Hz.}, \quad {}^{3}J(\text{PH}_{\text{B}}) = {}^{3}J(\text{PH}_{\text{B}})$

directly bonded to the phosphorus on the one hand (HI, **H2;** Me1, Me2) and the substituents which are *cis* with respect to the hydrogen on the other hand **(H3, H4;** Me3, Me4). The high-temperature process renders equivalent all the substituents of one ring.

As the temperature is raised, the two methyl peaks of (I) and (II) broaden, coalesce $[T_c 37^\circ$ for (I), 95° for (II)], and finally become a sharp line at high temperature. The **AA'BB'X** system of (I) changes into an A4X system [SJ(PH) *13.5* **Hz.]. As** the temperature is raised, the doublets corresponding to the proton directly bonded to the phosphorus atom remain unchanged. No change is observed in the spectra of (I) and (II) from 0° down to -70° .

Since $\frac{1}{I}$ (PH) is independent of temperature and since in the high-temperature A_4X system of (I), 3J (PH) is the mean value of the **3J(PH)** values obtained in the lowtemperature **AA'BB'X** system, the observed exchange process is intramolecular. From structural data concerning penta-co-ordinated phosphorus compounds,³ we assume that the phosphoranes (I) and **(11)** exist in a trigonal bipyramidal form, with the less electronegative substituent **(H)** in the equatorial plane4 {see formulae). In the rigid forms, there must be four different kinds of protons in **(I)** (Hl, Ha, **H3,** H4) and four different kinds of methyls in (I) and (II) (symmetry (C_2) (Me¹, Me², Me³, Me⁴). Since in the low-temperature spectra there are only two sharp methyl signals in (I) and (II) (width at half height w_i (I) 1.5 Hz., *wi* (11) **1.5Hz.)** and an **AA'BB'X** system for the ring protons of (I), an exchange process occurs at this temperature. The complete analysis of the **AA'BB'X** system of (I) ture. The complete analysis of the AA'BB'X system of (I) indicates that $|J_{AB} + J_{AB'}| < |J_{AB} - J_{AB'}|$, so J_{AB} and J_{AB} are of opposite signs and J_{AB} is a geminal coupling constant $(J_{AB} - 8.7, J_{AB} + 6.2 \text{ Hz})$. Consequently, the low-temperature exchange process makes equivalent the substituents which are *trans* with respect to the hydrogen

FIGURE (a) *Low-temperature process.* (b) *Reaction co-ordinate. High-temperature process.*

These results can be explained by considering pseudorotation processes^{5,6} (Figure b). From the observed spectral change, the mean lifetime τ in each stable state and the ΔG involved for the high-temperature process may be calculated. The existence **of** the transition state B with an hydrogen in the axial position introduces a transmission coefficient of $\frac{1}{2}$. The fact that one high-temperature process $(A \rightarrow C)$ renders the substituents of only one ring equivalent introduces another coefficient of $\frac{1}{2}$.

Thus $\tau(I) = 3.0 \times 10^{-2}$ sec. $\Delta G(I) = 15.6$ (kcal./mole) $\tau(II) = 2.2 \times 10^{-2} \text{ sec.}$ $\Delta G(II) = 18.4 \text{ (kcal./mole)}$

(Received, February 17fh, **1969;** *Corn.* **211.)**

Phys., **1968,48, 4796;** *R.* **R.** *Holmes, J. Chem. Phys.,* **1969,46, 3718;** W. *C.* Hamilton, S. J. Laplaca, and F. Ramirez, *J. Amel.. Chem.* Soc., 1965, 87, 127; W. C. Hamilton, S. J. Laplaca, F. Ramirez and C. P. Smith, ibid., 1967, 89, 2268.
Soc., 1965, 87, 127; W. C. Hamilton, S. J. Laplaca, F. Ramirez and C. P. Smith, ibid., 1967, 89, 2268.

*⁶*P. **C.** Lauterbur and F. Ramirez, *J. Amer. Chem. Soc.,* **1968, 90, 6722.** R. S. Berry, *J. Chem. Phys.,* **1966, 32, 933.**

¹ E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, *Inorg. Chem.*, 1964, 3, 1298; R. R. Holmes, R. P. Carter, jun., and G. E. Peterson, *Inorg. Chem.*, 1964, 3, 1748; D. G. Gorenstein and F. H. Whestheimer,