Double Intramolecular Process in Spirophosphoranes observed by Nuclear Magnetic Resonance Spectroscopy

By D. HOUALLA and R. WOLF

(Laboratoire de Chimie Physique II, Nouvelle Faculté des Sciences, 31-Toulouse, France)

and D. GAGNAIRE* and J. B. ROBERT

(Laboratoire de Chimie Organique Physique du Centre d'Etudes Nucléaires, avenue des Martyrs, 38-Grenoble)

TEMPERATURE-DEPENDENT spectra have been observed for some penta-co-ordinated phosphorus compounds.¹ We report here some results concerning spirophosphoranes (I) and (II),² which also display temperature-dependent n.m.r. spectra.

The n.m.r. spectra of (I) and (II) recorded at 100 MHz. as proved

in perdeuteriotoluene with hexamethyldisiloxane as internal lock, at *ca.* 0°, exhibit a well separated doublet [808 Hz. for (I), 801 Hz. for (II)]; each component of the doublet corresponds to half a proton; and two sharp, separated methyl doublets for each compound: $\Delta\delta Me$ 7.5 Hz. for (I); 10 Hz. for (II). The separation is due to a chemical shift, as proved by recording the spectra at 60 and 100 MHz.

For the compound (I), a complex AA'BB'X system is observed, corresponding to the methylene ring protons ${}^{3}J(\mathrm{PH}_{\mathtt{A}}) = {}^{3}J(\mathrm{PH}_{\mathtt{A}'}) = \pm 15.5 \text{ Hz.}, \quad {}^{3}J(\mathrm{PH}_{\mathtt{B}}) = {}^{3}J(\mathrm{PH}_{\mathtt{B}'})$ $= \pm 12$ Hz.). These two coupling constants are of the same sign.

directly bonded to the phosphorus on the one hand (H¹, H²; Me¹, Me²) and the substituents which are cis with respect to the hydrogen on the other hand (H³, H⁴; Me³, Me⁴). The high-temperature process renders equivalent all the substituents of one ring.

As the temperature is raised, the two methyl peaks of (I) and (II) broaden, coalesce [T_c 37° for (I), 95° for (II)], and finally become a sharp line at high temperature. The AA'BB'X system of (I) changes into an A4X system $[^{3}J(PH) 13.5 Hz.]$. As the temperature is raised, the doublets corresponding to the proton directly bonded to the phosphorus atom remain unchanged. No change is observed in the spectra of (I) and (II) from 0° down to -70°.

Since $^{1}I(PH)$ is independent of temperature and since in the high-temperature A_4X system of (I), ${}^{3}J(PH)$ is the mean value of the ${}^{s}J(PH)$ values obtained in the lowtemperature AA'BB'X system, the observed exchange process is intramolecular. From structural data concerning penta-co-ordinated phosphorus compounds,³ we assume that the phosphoranes (I) and (II) exist in a trigonal bipyramidal form, with the less electronegative substituent (H) in the equatorial plane⁴ (see formulae). In the rigid forms, there must be four different kinds of protons in (I) (H¹, H², H³, H⁴) and four different kinds of methyls in (I) and (II) (symmetry (C_2) (Me¹, Me², Me³, Me⁴). Since in the low-temperature spectra there are only two sharp methyl signals in (I) and (II) (width at half height w_{1} (I) 1.5 Hz., w_{1} (II) 1.5 Hz.) and an AA'BB'X system for the ring protons of (I), an exchange process occurs at this temperature. The complete analysis of the AA'BB'X system of (I) indicates that $|J_{AB} + J_{AB'}| < |J_{AB} - J_{AB'}|$, so J_{AB} and $J_{AB'}$ are of opposite signs and J_{AB} is a geminal coupling constant $(J_{AB} - 8.7, J_{AB'} + 6.2 \text{ Hz})$. Consequently, the low-temperature exchange process makes equivalent the substituents which are trans with respect to the hydrogen

FIGURE (a) Low-temperature process. (b) Reaction co-ordinate. High-temperature process.

These results can be explained by considering pseudorotation processes^{5,6} (Figure b). From the observed spectral change, the mean lifetime τ in each stable state and the ΔG involved for the high-temperature process may be calculated. The existence of the transition state B with an hydrogen in the axial position introduces a transmission coefficient of $\frac{1}{2}$. The fact that one high-temperature process $(A \rightarrow C)$ renders the substituents of only one ring equivalent introduces another coefficient of $\frac{1}{2}$.

Thus $\tau(I) = 3.0 \times 10^{-2}$ sec. $\Delta G(I) = 15.6$ (kcal./mole) $\tau(\text{II}) = 2.2 \times 10^{-2} \text{ sec.}$ $\Delta G(\text{II}) = 18.4 \text{ (kcal./mole)}$

(Received, February 17th, 1969; Com. 211.)

¹ E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, *Inorg. Chem.*, 1964, 3, 1298; R. R. Holmes, R. P. Carter, jun., and G. E. Peterson, *Inorg. Chem.*, 1964, 3, 1748; D. G. Gorenstein and F. H. Whestheimer, *J. Amer. Chem. Soc.*, 1967, 89, 2762; *Proc. Nat. Acad. Sci. U.S.A.*, 1967, 58, 1747; F. Ramirez, *Accounts Chem. Res.*, 1968, 1, 168. ^a M. Sanchez, J. F. Brazier, D. Houalla, and R. Wolf, *Bull. Soc. chim. France*, 1967, 3930; M. Sanchez, R. Wolf, R. Burgada and F. Mathis, *ibid.*, 1968, 773.

⁸ E. L. Muetterties and R. A. Schunn, Quart. Rev., 1966, 20, 245, and references therein; R. M. Deiters and R. R. Holmes, J. Chem. Phys., 1968, 48, 4796; R. R. Holmes, J. Chem. Phys., 1969, 46, 3718; W. C. Hamilton, S. J. Laplaca, and F. Ramirez, J. Amer. Chem. Soc., 1965, 87, 127; W. C. Hamilton, S. J. Laplaca, F. Ramirez and C. P. Smith, ibid., 1967, 89, 2268.
⁴ E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 1963, 2, 613.

⁶ R. S. Berry, J. Chem. Phys., 1966, 32, 933.
⁶ P. C. Lauterbur and F. Ramirez, J. Amer. Chem. Soc., 1968, 90, 6722.