The Reaction of 9-Fluorenylmethanol with Base: a Carbanion Mechanism of - **Elimination**

By R. A. MORE O'FERRALL^{*}[†] and S. SLAE

(Physical Chemistry Laboratory, South Parks Road, Oxford, and The Illinois Institute of Technology, Chicago, Illinois 60616)

Summary In aqueous solution, base-catalysed β -elimination of 9-fluorenylmethanol is accompanied by reversible formation of a carbanion, which is shown to be an intermediate.

AT 25° , in aqueous sodium hydroxide, β -elimination of 9-fluorenylmethanol (I), to form dibenzofulvene, occurs by an ElcB mechanism.¹ Rate constants for elimination, $k_{\rm E}$,

$$
RCH_2
$$
 = Fluorene; (I-h) L = H; (I-d) L = ²H; (I-t) L = ³H

and for β -hydrogen exchange, k_z , were determined respectively by spectrophotometry and liquid scintillation

counting. In terms of the scheme, which combines the possibilities of elimination by both *ElcB* and *E2* mechanisms, $k_x = k_2 + k_1$ and $k_x = k_2 + \alpha k_1$, where $\alpha = k/(k + 1)$ *k-J.* Two pieces of evidence indicate that a carbanion is formed in the course of reaction: (i) The rate of tritium exchange of *(I-t)* slightly exceeds that of elimination from $(I-h)$; (ii) Elimination of $(I-h)$ in D₂O, and of $(I-d)$ in H₂O, showed kinetic induction periods which could be interpreted quantitatively in terms of isotopic exchange.

A kinetic analysis of the induction periods led to identification of the carbanion as a reactive intermediate. For the reaction of $(I-h)$ in D_2O , the analysis yields the rate constants $k_{\mathbb{E}}^{\mathbb{H}}$ and $k_{\mathbb{E}}^{\mathbb{D}}$ for elimination of *(I-h)* and *(I-d)*, and the rate constant k_{π}^{H} for exchange of (I-h), the isotopic form of the substrate initially present. In terms of the pseudofirst-order kinetic plots shown in the Figure, $k_{\rm g}^{\rm H}$ and $k_{\rm g}^{\rm D}$ clearly correspond to the initial and limiting slopes of the curve for D_2O . Although the origin of k_x^H is less easily seen, it is related, together with $k_{\rm E}^{\rm H}$ and $k_{\rm E}^{\rm D}$, to the fraction of net elimination occurring prior to completion of exchange.

t Present address : Department of Chemistry, Rice University, Houston, Texas, **77001.**

The mechanism of elimination can be determined by comparing the isotope effect upon elimination, $k_{\rm E}^{\rm H}/k_{\rm E}^{\rm D}$, in effects, arising from the change in base from OH- to OD-, and in leaving group from OH to OD.

Rate constants² for exchange and elimination in H_2O *and* D_2O *at* 25°

a All rate constants are second order with units l. mole⁻¹sec.⁻¹; **b** $k_{\overline{x}}^{\text{D}}$; **c** $k_{\overline{x}}^{\text{D}}$.

the single solvent D,O, with the *solvent* isotope effect upon elimination of $(I-h)$ in H_2O and of $(I-d)$ in D_2O . If the elimination of $(I-h)$ in H_2O and of $(I-d)$ in D_2O . If the carbanion is not an intermediate, $k_2 \gg \alpha k_1$ and k_B^H/k_B^D $= k^{\text{H}}/k_{\text{R}}^{D}$, the primary isotope effect upon *E2* elimination; while the solvent isotope effect comprises contributions, both from the primary effect $k_2^{\text{H}}/k_2^{\text{D}}$, and from secondary

FIGURE

Plots of $log(OD-OD_{\infty})$ vs. *time for reactions of isotopically sub*stituted 9 fluorenylmethanol (I) with sodium hydroxide in H₂O and
D₂O. Upper curve (I-h) in H₂O; lower curve, \rightleftarrows -d) in D₂O. Base
concentrations are approximately the same. OD denotes optical *density 0; the product.*

The experimental value for the primary isotope effect is shown in the Table; for D_2O , $k_{\rm B}^{\rm H}/k_{\rm D}^{\rm B}=7.2$. The solvent isotope effect may be determined either directly, or from the limiting slopes of the plots for H_2O and D_2O shown in the Figure, and was found to be 0.92 ± 0.03 . Since secondary isotope effects are much smaller than large primary effects,² and in this instance probably compensating, we conclude that the observed solvent isotope effect is too small to incorporate a primary effect as large as **7.2** and, therefore, is inconsistent with an *E2* mechanism. On the other hand, since reactions involving transfer of a proton in a pre-equilibrium step normally proceed faster in D_2O than in H_2O , it is quite consistent with an $ElcB$ mechanism.

Quantitative confirmation of this conclusion comes from an examination of the rate constants for hydrogen isotope exchange. For an *ElcB* mechanism, $\alpha h_1 \geq h_2$ and since, for low substrate concentrations, α (the fraction of carbanion proceeding to form product) depends only upon the isotope in the solvent and not upon that in the substrate, in D_2O , $k_{\mathbb{R}}^{\mathbb{H}}/k_{\mathbb{R}}^{\mathbb{D}} = k_{1}^{\mathbb{H}}/k_{1}^{\mathbb{D}}$, the isotope effect upon ionization of *(I)*. For this mechanism also, k_x^{H} , the rate constant for exchange of (I-h) in D₂O, may be identified with k_1^{H} , and use of the Swain Schaad relation³ between deuterium and tritium isotope effects, $k_{\text{H}}/k_{\text{T}} = (k_{\text{H}}/k_{\text{D}})^{1.442}$, allows calculation of the independently measured rate constant for tritium exchange, k_x^T . As shown in the Table, for D_2O , excellent agreement between calculated and observed rate constants is obtained.

For the reaction of $(I-d)$ in H_2O , agreement between the corresponding calculated and observed values of k_x^T is less satisfactory and a smaller value of $k_{\mathbb{E}}^{\mathbb{H}}/k_{\mathbb{E}}^{\mathbb{D}}$ is obtained. These discrepancies are in part due to greater intrinsic errors in the measurements for H₂O, but may indicate the presence of a component of *E2* elimination, with a low primary isotope effect, contributing significantly only to the slow reaction of $(I-d)$ in $H₂O$.

This work has been supported by the Petroleum Research Fund of the American Chemical Society.

(Received, February **7812, 1969;** *Corn.* **174.)**

¹D. J. McLennan, *Quart. Rev.,* **1967,21,490;** T. **I.** Crowell, R. T. Kemp, R. E. Lutz, and **A. A.** Wall, *J. Amer. Chem. SOL,* **1968,90,** 4638; W. K. Kwok, W. G. Lee, and S. I. Miller, *J. Amer. Chem. Soc.*, 1969, 91, 468.
² For secondary solvent isotope effects upon E2 elimination, see L. J. Steffa and E. R. Thornton, *J. Amer. Chem. Soc.*, 1967, 89,

6149.

^sC. **G.** Swain, E. *C.* Stivers, J. F. Reuwer, jun., and **1;.** J. Schaad, *J. Amer. Chem. SOC.,* **1958,** *80,* **5885; E. S. Lewis** and J. **K.** Robinsor, *ibid.,* **1968,90, 4337.**