The Reaction of 9-Fluorenylmethanol with Base: a Carbanion Mechanism of β-Elimination

By R. A. MORE O'FERRALL*† and S. SLAE

(Physical Chemistry Laboratory, South Parks Road, Oxford, and The Illinois Institute of Technology, Chicago, Illinois 60616)

Summary In aqueous solution, base-catalysed β -elimination of 9-fluorenylmethanol is accompanied by reversible formation of a carbanion, which is shown to be an intermediate.

At 25°, in aqueous sodium hydroxide, β -elimination of 9-fluorenylmethanol (I), to form dibenzofulvene, occurs by an *ElcB* mechanism.¹ Rate constants for elimination, $k_{\rm E}$,

$$\operatorname{RCH}_2 = \operatorname{Fluorene}$$
; (I-h) L = H; (I-d) L = ²H; (I-t) L = ³H

and for β -hydrogen exchange, k_x , were determined respectively by spectrophotometry and liquid scintillation

counting. In terms of the scheme, which combines the possibilities of elimination by both E1cB and E2 mechanisms, $k_x = k_2 + k_1$ and $k_E = k_2 + \alpha k_1$, where $\alpha = k/(k + k_{-1})$. Two pieces of evidence indicate that a carbanion is formed in the course of reaction: (i) The rate of tritium exchange of (I-t) slightly exceeds that of elimination from (I-k); (ii) Elimination of (I-h) in D₂O, and of (I-d) in H₂O, showed kinetic induction periods which could be interpreted quantitatively in terms of isotopic exchange.

A kinetic analysis of the induction periods led to identification of the carbanion as a reactive intermediate. For the reaction of (I-h) in D_2O , the analysis yields the rate constants $k_{\rm E}^{\rm H}$ and $k_{\rm E}^{\rm D}$ for elimination of (I-h) and (I-d), and the rate constant $k_{\rm E}^{\rm H}$ for exchange of (I-h), the isotopic form of the substrate initially present. In terms of the pseudofirst-order kinetic plots shown in the Figure, $k_{\rm E}^{\rm H}$ and $k_{\rm E}^{\rm D}$ clearly correspond to the initial and limiting slopes of the curve for D_2O . Although the origin of $k_{\rm x}^{\rm H}$ is less easily seen, it is related, together with $k_{\rm E}^{\rm H}$ and $k_{\rm D}^{\rm D}$, to the fraction of net elimination occurring prior to completion of exchange.

† Present address: Department of Chemistry, Rice University, Houston, Texas, 77001.

The mechanism of elimination can be determined by comparing the isotope effect upon elimination, $k_{\rm E}^{\rm m}/k_{\rm E}^{\rm p}$, in

effects, arising from the change in base from OH^- to OD^- , and in leaving group from OH to OD.

Rate constants^a for exchange and elimination in H₂O and D₂O at 25°

Solvent	10 ⁴ k표	104kP	$10^{4}k_{x}$	$k_{\rm E}^{ m H}/k_{ m E}^{ m D}$	$10^4 k_x^{\rm T}$ (obs.)	$10^4 k_x^{\mathrm{T}}$ (calc.)
D2O H2O	$14.3 \\ 1.81$	$1.97 \\ 0.37$	59.0ь 6.0с	$7 \cdot 2 \\ 5 \cdot 1$	$3.30 \\ 2.23$	$3 \cdot 44$ $2 \cdot 9$

^a All rate constants are second order with units l. mole⁻¹sec.⁻¹; ^b $k_x^{\rm H}$; ^c $k_x^{\rm D}$.

the single solvent D_2O , with the *solvent* isotope effect upon elimination of (I-*h*) in H_2O and of (I-*d*) in D_2O . If the carbanion is not an intermediate, $k_2 \gg \alpha k_1$ and k_E^H/k_E^D $= k^H/k_D^D$, the primary isotope effect upon E2 elimination; while the solvent isotope effect comprises contributions, both from the primary effect k_2^H/k_D^D , and from secondary

FIGURE

Plots of $\log(OD-OD_{\infty})$ vs. time for reactions of isotopically substituted 9 fluorenylmethanol (1) with sodium hydroxide in H₂O and D₂O. Upper curve (I-h) in H₂O; lower curve, \exists -d) in D₂O. Base concentrations are approximately the same. OD denotes optical density of the product.

The experimental value for the primary isotope effect is shown in the Table; for D_2O , $k_E^{\rm m}/k_D^{\rm g} = 7\cdot 2$. The solvent isotope effect may be determined either directly, or from the limiting slopes of the plots for H_2O and D_2O shown in the Figure, and was found to be 0.92 ± 0.03 . Since secondary isotope effects are much smaller than large primary effects,² and in this instance probably compensating, we conclude that the observed solvent isotope effect is too small to incorporate a primary effect as large as $7\cdot 2$ and, therefore, is inconsistent with an E2 mechanism. On the other hand, since reactions involving transfer of a proton in a pre-equilibrium step normally proceed faster in D_2O than in H_2O , it is quite consistent with an ElcB mechanism.

Quantitative confirmation of this conclusion comes from an examination of the rate constants for hydrogen isotope exchange. For an *ElcB* mechanism, $\alpha k_1 \gg k_2$ and since, for low substrate concentrations, α (the fraction of carbanion proceeding to form product) depends only upon the isotope in the solvent and not upon that in the substrate, in D₂O, $k_{\rm E}^{\rm m}/k_{\rm E}^{\rm m} = k_{\rm I}^{\rm m}/k_{\rm I}^{\rm n}$, the isotope effect upon ionization of (I). For this mechanism also, $k_{\rm x}^{\rm m}$, the rate constant for exchange of (I-*h*) in D₂O, may be identified with $k_{\rm I}^{\rm m}$, and use of the Swain Schaad relation³ between deuterium and tritium isotope effects, $k_{\rm H}/k_{\rm T} = (k_{\rm H}/k_{\rm D})^{1.442}$, allows calculation of the independently measured rate constant for tritium exchange, $k_{\rm x}^{\rm T}$. As shown in the Table, for D₂O, excellent agreement between calculated and observed rate constants is obtained.

For the reaction of (I-d) in H_2O , agreement between the corresponding calculated and observed values of $k_x^{\rm H}$ is less satisfactory and a smaller value of $k_{\rm E}^{\rm H}/k_{\rm E}^{\rm D}$ is obtained. These discrepancies are in part due to greater intrinsic errors in the measurements for H_2O , but may indicate the presence of a component of E2 elimination, with a low primary isotope effect, contributing significantly only to the slow reaction of (I-d) in H_2O .

This work has been supported by the Petroleum Research Fund of the American Chemical Society.

(Received, February 7th, 1969; Com. 174.)

¹ D. J. McLennan, Quart. Rev., 1967, 21, 490; T. I. Crowell, R. T. Kemp, R. E. Lutz, and A. A. Wall, J. Amer. Chem. Soc., 1968, 90, 4638; W. K. Kwok, W. G. Lee, and S. I. Miller, J. Amer. Chem. Soc., 1969, 91, 468. ² For secondary solvent isotope effects upon E2 elimination, see L. J. Steffa and E. R. Thornton, J. Amer. Chem. Soc., 1967, 89,

² For secondary solvent isotope effects upon *E2* elimination, see L. J. Steffa and E. K. Inornton, *J. Amer. Chem. Soc.*, 1967, 89, 6149.

³C. G. Swain, E. C. Stivers, J. F. Reuwer, jun., and L. J. Schaad, J. Amer. Chem. Soc., 1958, 80, 5885; E. S. Lewis and J. K. Robinson, *ibid.*, 1968, 90, 4337.