The Equilibrium between Tertiary Alkylperoxy-radicals and Tetroxide Molecules

By J. E. BENNETT, D. M. BROWN,* and B. MILE

(Shell Research Limited, Thornton Research Centre, P.O. Box 1, Chester, CH1 3SH)

Summary Di-tertiary-alkyl tetroxide molecules are stable at low temperatures (below -115°) and are in equilibrium with the corresponding peroxy-radicals.

THE autoxidation of liquid hydrocarbons proceeds by a chain mechanism¹ in which the termination step is generally

$$\mathrm{RO}_{2^{\bullet}} + \mathrm{RO}_{2^{\bullet}} \rightarrow \text{non-radical products}$$
 (1)

where RO_2 represents a peroxy-radical. Kinetic, isotopic, and product studies² of autoxidation indicate that this reaction proceeds through a tetroxide intermediate (RO_4R) which may be merely an activated complex or a molecule with an appreciable lifetime. Recent work has shown that di-t-butyl tetroxide can be prepared³ below -80° and that in methylene chloride it is in equilibrium⁴ with t-butylperoxy-radicals at temperatures in the range -110° to -85° .

During studies of the formation and decay of a variety of tertiary-alkylperoxy-radicals in hydrocarbon solvents we have found evidence for the existence of tetroxide molecules which are in equilibrium with the peroxy-radicals. Peroxy-radicals were produced by the photo-decomposition at -80° to -50° of di-t-butyl peroxide dissolved in an

FIGURE. Variation of [RO₂[•]] with temperature in 2-methylpentane. Circles indicate experimental points; the line indicates the computed curve.

oxygen-saturated alkane [reactions (2)—(4)]. The concentration of peroxy-radicals was measured by e.s.r. (In each case the e.s.r. spectrum was a single line with a *g*factor close to 2.015.) The attack of t-butoxy-radicals on the hydrocarbon [reaction (3)] is selective and as a result tertiary peroxy-radicals are formed more readily than primary or secondary peroxy-radicals. Also, tertiary peroxy-radicals terminate at a slower rate than the other peroxy-radicals⁵ so that shortly after the end of photolysis only tertiary radicals remain. Following photolysis at -80° to -50° the samples were cooled to temperatures below -115° .

$$Me_3COOCMe_3 \longrightarrow 2Me_3CO$$
 (2)

$$Me_{3}CO + RH \longrightarrow Me_{3}COH + R \cdot$$
 (3)

$$R \cdot + O_2 \longrightarrow RO_2 \cdot$$
 (4)

Below -115° the irreversible decay of tertiary peroxyradicals observed at higher temperatures is negligible. However, a further reduction in temperature causes the radical concentration to decrease rapidly to a new value which, once attained, shows no variation with time. The process is completely reversible within the temperature range -160° to -115° . The variation of concentration with temperature for tertiary peroxy-radicals derived from 2-methylpentane is shown in the Figure and similar results were obtained for tertiary peroxy-radicals derived from 2-methylbutane, 3-methylpentane, 2,3-dimethylbutane, 2,2,3-trimethylbutane, and cumene.

Our results show that there is a temperature-dependent equilibrium between peroxy-radicals and a non-radical product or products. An equilibrium that involves the combination of t-butoxy-radicals and peroxy-radicals cannot account for the results, as t-butoxy-radicals produced by photolysis at -115° are rapidly converted into peroxy-radicals [reactions (2)—(4)]. The observed dependence of the radical concentration on temperature is attributed therefore to an equilibrium between two peroxyradicals and a tetroxide molecule, a process which involves the formation or scission of only one bond.

$$2RO_2 \Rightarrow RO_4 R$$
 (5)

$$K = [\mathrm{RO}_4 \mathrm{R}] / [\mathrm{RO}_2 \cdot]^2 \tag{6}$$

The variation of the equilibrium constant (K) with temperature (T) can be described by an integrated form of the van't Hoff isochore,

$$\ln K = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}$$
(7)

where ΔS° and ΔH° are the changes in entropy and enthalpy. Equations (6) and (7) are combined to give

$$\ln[\mathrm{RO}_4\mathrm{R}] - 2\ln[\mathrm{RO}_2\cdot] = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}$$
(8)

As no irreversible decay occurs at temperatures below -115° the concentrations of tetroxide molecules and peroxy-radicals are related by

$$2[\mathrm{RO}_4\mathrm{R}] + [\mathrm{RO}_2 \cdot] = [\mathrm{RO}_2 \cdot]_{\mathrm{max}}$$
(9)

where $[RO_2]_{max}$ is the radical concentration at complete dissociation.

Combination of equations (8) and (9) gives

$$\ln([\mathrm{RO}_{2}\cdot]_{\max} - [\mathrm{RO}_{2}\cdot]) - 2\ln[\mathrm{RO}_{2}\cdot] - \ln 2 = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(10)

The value of $[RO_2]_{max}$ cannot be determined experimentally, since at temperatures where dissociation of the tetroxide is nearly complete the irreversible decay of the peroxy-radicals is appreciable. Thus, the values of $[RO_2,]_{max}$, ΔH^0 and ΔS^0 which give the best agreement between the experimental and predicted results for the variation of $[RO_2 \cdot]$ with temperature (Figure) were calculated by a curve-fitting process using a computer. The values of ΔH^0 and ΔS^0 which are listed in the Table are in excellent agreement with those obtained independently by Adamic, Howard, and Ingold (see ref. 6).

Although these values of ΔH^0 , together with that for t-butylperoxy-radicals⁴ (-6 kcal. mole⁻¹), lie within the range of values calculated by Benson⁷ using group additivity relationships they are above his mean value. Further, the fact that a reversible equilibrium involving peroxyradicals is observed in the temperature range -160° to -115° shows that tetroxides are stable at higher temperatures than that of -170° estimated by Benson.⁷

- ⁵⁰⁹, 81, 4945; G. A. Russell, 101a., 1991, 79, 3871.
 ⁸ N. A. Milas and S. M. Djokić, J. Amer. Chem. Soc., 1962, 84, 3098; N. A. Milas and B. Plesničar, *ibid.*, 1968, 90, 4450.
 ⁴ P. D. Bartlett and G. Guaraldi, J. Amer. Chem. Soc., 1967, 89, 4799.
 ⁵ J. A. Howard and K. U. Ingold, Canad. J. Chem., 1968, 46, 2661.
 ⁶ K. Adamic, J. A. Howard, and K. U. Ingold, following Communication.
 ⁷ S. W. Baroon, J. Amer. Chem. Soc. 1029.

- ⁷ S. W. Benson, J. Amer. Chem. Soc., 1964, 86, 3922.
- ⁸ J. E. Bennett, D. M. Brown, and B. Mile, to be published.

If the self-termination reaction of peroxy-radicals proceeds through a tetroxide intermediate [reaction (11)] then the experimentally determined

$$\operatorname{RO}_{2^{\circ}} + \operatorname{RO}_{2^{\circ}} \rightleftharpoons \operatorname{RO}_{4} \operatorname{R}^{k_{1}} \to \operatorname{non-radical products}$$
(11)

termination rate constant, k is equivalent to Kk_1 . It has been found⁸ that, for 2,2,3-trimethylbutane, $k = 10^{9\cdot 2} \pm 1\cdot 0$ exp $[(7.5 \pm 1.0)/RT]$ mole⁻¹ l.sec.⁻¹. Combination of this result with the values of ΔS^0 and ΔH^0 given in the Table

Values of ΔH	° and ΔS°	for the	equilibrium	2RO ₂ ·	$\rightleftharpoons RO_{i}$	1R
----------------------	--------------------------	---------	-------------	--------------------	-----------------------------	----

	$\Delta H^{m 0}$	ΔS^{0}
Parent hydrocarbon	kcal. mole ⁻¹	cal. deg1 mole-1
2-Methylbutane	-8.9 ± 1.0	-36 ± 8
2-Methylpentane	-8.9 ± 0.7	-39 ± 6
3-Methylpentane	-9.7 ± 0.5	-44 + 4
2,3-Dimethylbutane	-8.2 ± 0.5	-34 + 4
2,2,3-Trimethylbutane	-8.7 + 1.0	-38+7
Cumene	-11.2 ± 0.9	-48 ± 7

gives the following Arrhenius parameters for the irreversible decay of the tetroxide molecule; $A_1 = 10^{17.5 \pm 2.4}$ sec.⁻¹, $E_1 = 16.2 \pm 2.0$ kcal. mole⁻¹.

(Received, March 17th, 1969; Com. 376.)

¹ L. Bateman, Quart. Rev., 1954, 8, 147.

² J. R. Thomas, *J. Amer. Chem. Soc.*, 1965, 87, 3935; P. D. Bartlett and T. G. Traylor, *ibid.*, 1963, 85, 2407; H. S. Blanchard, *ibid.*, 1959, 81, 4548; G. A. Russell, *ibid.*, 1957, 79, 3871.