Novel Thermal Phenyl Migrations from Carbon to Silicon

By HIDEKI SAKURAI,* AKIRA HOSOMI, and MAKOTO KUMADA

(Department of Synthetic Chemistry, Kyoto University, Sakyo-ku, Kyoto, Japan)

In silicon compounds, vacant 3*d*-orbitals are known to act as electron-acceptors towards adjacent π -systems as a result of $(p-d)\pi$ bonding.¹

During studies of intramolecular interactions between d_{π} -orbitals of silicon and non-adjacent π -electron systems, we have found a novel type of rearrangement—the first example of an aryl migration from carbon to silicon.[†]

When benzyldimethylsilane was heated in an ampoule

at 425—450° for 15 hr., or passed slowly through a quartz tube mounted in a thermostatted furnace at 500°, trimethylphenylsilane was obtained in 17·3—87·7% yield, depending on the reaction conditions. The products also contained traces of lower- and higher-boiling materials presumably formed by Si-H/Si-Ph thermal redistribution.² The intramolecular nature of the reaction is supported by the fact that benzyltrimethylsilane did not react with any

† 1,2-Shifts of aryl groups from silicon to carbon by ionic mechanisms are known; see ref. 1, pp. 434-441.

hydrosilanes (e.g., HSiMeCl₂) under the same conditions, i.e., phenyl-methylene cleavage did not take place intermolecularly with hydrosilanes. Moreover, dimethyl-(pmethylbenzyl)silane and the m-isomer gave exclusively trimethyl-p-tolylsilane and the m-isomer, respectively.

$$\begin{array}{ccc}
 & 440^{\circ} \\
 & X \cdot C_{6}H_{4} \cdot CH_{2} \cdot SiHMe_{2} \xrightarrow{} & X \cdot C_{6}H_{4}SiMe_{3} \\
 & (I) a, X = H \\
 & b, X = p \cdot Me \\
 & c, X = m \cdot Me \\
\end{array} \quad \begin{array}{c}
 & (II) a, X = H \\
 & b, X = p \cdot Me \\
 & c, X = m \cdot Me \\
\end{array}$$

We have also investigated possible aryl migrations from carbon to silicon in a number of other compounds. For example, 5-aryl-2,4,4-trimethyl-2,4-disilapentanes (III) undergo rearrangement quantitatively, (IIIa) and (IIIb) giving exclusively (IVa) and (IVb), respectively.

$$370^{\circ}$$

$$X \cdot C_{6}H_{4} \cdot CH_{2} \cdot SiMe_{2} \cdot CH_{2} \cdot SiHMe_{2} \longrightarrow$$

$$H \cdot CH_{2} \cdot SiMe_{2} \cdot CH_{2} \cdot SiMe_{2} \cdot C_{6}H_{4} \cdot X$$
(III) a, X = H
b, X = p - Me
c, X = m - Me
b, X = p - Me
c, X = m - Me

¹C. Eaborn, "Organosilicon Compounds," Butterworths, London, 1960, ch. 3.

² H. Gilman and D. H. Miles, J. Org. Chem., 1958, 23, 326. ³ B. Capon, Quart. Rev., 1964, 18, 45.

Results of thermolyses of dimethyl-(ω -phenylalkyl)silanes are listed in the Table.

Thermal rearrangement	of Ph	[CH	[2]"·Si	Me ₂]	H to	H[CH ₂]"SiMe ₂ ·Ph
(sealed	tubes	at	370°	for	15 h	ır.) – – –	

п	••	••	2	3	4	5	6
%	Yield	••	0	67.5	38.5	8.7	0

The maximum yield at n=3 and lack of rearrangement at n=2 and 6 may be taken as evidence for the intramolecular nature of the reaction. The transition states of intramolecular migrations should involve ring formation with a silicon atom, methylene(s), and the phenyl carbon atom to which the ω -(dimethylsilyl)alkyl group is attached, and it is well established that in such a ring-forming transition state, five-membered-ring formation is most favourable while four- and eight-membered rings are generally infeasible.3

Thermolysis of some twenty variously substituted (ω phenylalkyl)hydrosilanes were examined and details will be reported later with mechanistic considerations.

(Received, March 11th, 1969; Com. 345.)