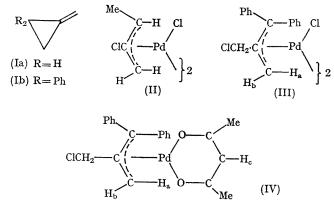
Reaction of Methylenecyclopropanes with Palladium Chloride

By R. Novori* and H. Takaya


(Department of Chemistry, Nagoya University, Nagoya, Japan)

The preparation of π -allylpalladium com-Summary plexes from methylenecyclopropanes and palladium chloride is described.

MUCH attention has been focused on the reaction of cyclo-We propare derivatives with transition-metal complexes.¹ have examined the reaction with palladium chloride.

Methylenecyclopropane (Ia) in benzene was added with stirring (room temp.) to dichloro-bis(benzonitrile)palladium in the same solvent. The resulting yellow crystals were recrystallised from benzene-n-hexane (1:4) to give di- μ chloro-bis(2-chloro-1-methyl- π -allyl)dipalladium(II) (II) in nearly quantitative yields, m.p. 179-183° (decomp.) (lit.,² 182-186°). The spectral properties were in agreement with those of an authentic sample. Under the same conditions, 2,2-diphenylmethylenecyclopropane (Ib) afforded di-µ-chloro-bis(2-chloromethyl-1,1-diphenyl-πallyl)d:palladium(II) (III) [80%, m.p. 208-210° (decomp.)]. The i.r. spectrum (tetrachloroethylene suspension) indicated the absence of methyl and terminal methylene groups. The n.m.r. spectrum (CDCl₃, δ from Me₄Si): 3.52 (br s, H_a, $w_{\frac{1}{2}}$ 3.3 Hz), 4.16 (d, Hb, J 1.5 Hz), 4.07 and 4.31 (AB qu, J_{AB} 11.4 Hz, CH₂Cl), and 7.1-7.7 p.p.m. (m, C₆H₅). The assigned structure confirmed by reduction $(H_2, 60^\circ)$ to give 1,1-dimethyl-2,2-diphenylethylene (65%). On treatment with thallous acetylacetonate, (III) was converted to monoacetylacetonato(2-chloromethyl-1,1-diphenyl- π nuclear allyl)palladium(11) (IV), [85%, m.p. 55-58°; n.m.r. $(CDCl_{1}): \delta$ 1.99 and 2.05 (2 s, CH₃), 3.39 (br s, H_a, 3.3 Hz),

4.00 (d, H_b, J 1.2 Hz), 4.03 and 4.20 (AB qu, J_{AB} 10.8 Hz, CH_2Cl), 5.37 (s, H_c), and 7.1-7.7 p.p.m.(m, C_6H_5)].

Hence the reaction leads to the formation of π -allylic palladium complexes. The direction of ring fission is markedly influenced by substitution. The reaction of methylenecyclopropane itself (Ia) involves the fission of the C-1-C-2 bond, (cf. the reaction of vinylcyclopropane derivatives with palladium chloride₃). The diphenyl derivative (Ib), however, gives the C-2-C-3 cleavage product. These findings are reminiscent of the behaviour of methylenecyclopropanes towards di-iron enneacarbonyl.4

(Received, February 27th, 1969; Com. 278.)

- ⁴ R. Noyori, T. Nishimura, and H. Takaya, Chem. Comm., 1969, 89.

¹ E.g, C. F. H. Tipper, Proc. Chem. Soc., 1955, 713; D. M. Adams, J. Chatt, and R. G. Guy, *ibid.*, 1960, 179; D. M. Adams, J. Chatt, R. G. Guy, and N. Sheppard, J. Chem. Soc., 1961, 738; S. Sarel, R. Ben-Shoshan, and B. Kirson, J. Amer. Chem. Soc., 1965, 87, 2517; C. H. DePuy, V. M. Kobel, and D. H. Gibson, J. Organometallic Chem., 1968, 13, 266; A. D. Ketley and J. A. Braatz, Chem. Comm., 1968, 959; W. J. Irwin and F. J. McQuillin, Tetrahedron Letters, 1968, 1937. ^a M. S. Lupin, J. Powell, and B. L. Shaw, J. Chem. Soc. (A), 1966, 1687. ^a T. Shono, T. Yoshimura, Y. Matsumura, and R. Oda, J. Org. Chem., 1968, 33, 876. ^c R. Novori T. Nishimura and H. Takaya Chem. Comm. 1969, 29