Hydrogen Randomization between Phenyl Groups in the Electron **Impact-induced Fragmentation of Substituted Diphenylacetylenes**

By S. SAFE

(Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, Canada)

THE scrambling of aromatic hydrogens upon electron impact has been amply demonstrated with benzene¹ and its substituted derivatives² as well as in some bicyclic aromatic compounds.³ Alkylbenzene derivatives have been thoroughly investigated⁴ and in most cases hydrogen scrambling is thought to occur after rearrangement to a seven-membered ring.

Although hydrogen scrambling in aliphatic acetylenic compounds has been reported⁵ very little information is

m/e192 C2H2 ċн,' (a), *m* / e191 (b), m/e165 Equation 1

available concerning the fragmentation of aromatic acetylene derivatives upon electron impact. The methyl substituted diphenylacetylene (I) and its deuteriated analogue (II) were prepared by the coupling⁶ of iodobenzene and the copper(1) derivative of 4-methylphenylacetylene and their mass spectra were recorded.[†]

The fragmentation pathway suggested for the substituted

diphenylacetylene (I) is shown (equation 1) and not unexpectedly the loss of a proton to give the ion (a) at m/e 191 followed by expulsion of C_2H_2 to give ion (b) at m/e 165 is observed. This is typical of the mass spectra of substituted alkylbenzenes.⁴ The fragmentation pattern of the deuteriated acetylene (II)[†] is shown (equation 2). The loss of a proton to give the $C_{15}H_6D_5$ ion (c) at m/e 196 occurs without any prior hydrogen scrambling. The fragment ion (c) loses a C_2H_2 fragment to give the $C_{13}H_4D_5$ ion (d) at m/e170 and also loses C_2HD and C_2D_2 . The metastable peaks at m/e 147.5, 145.7, and 144.0 confirm that these fragmentation reactions occur. These results are in contrast with the

† Mass spectra were measured with a Consolidated Electrodynamics Corporation 21-110B instrument at 70 ev with an inlet temperature of 46^t [‡] The isotopic purity of the $C_{15}H_7D_5$ acetylene (II) was >97%.

			TABLE		
Unlabelled acetylene (I)		Labelled acetylene (II)			
Relative			Relative Mass measurement		
Mass	abundance	Mass	abundance	Calculated	Found
193	17	198	16		
192	100	197	100		
191	26	196	24		
190	4	195	6		
166	1.5	171	0.6		
165	9.0	170	$4 \cdot 5$	$170.1018 (C_{12}H_{4}D_{5})$	$170 \cdot 1018$
164	1.3	169	4.7	$169.0954 (C_1, H_5D_4)$	169.0955
163	2.7	168	3.3	168.0893 (C, H, D,	168.0893
162		167	1.5	. 13 0 3/	

data obtained for the aromatic acetylenes (III; R = H, D) and (IV; $R = CH_2OH$, CHDOH) which were prepared by conventional methods. Comparison of the mass spectra indicated that in the loss of acetylene from the analogous $R \cdot C_7 H_6^+$ ions, expulsion of $C_2 HD$ was not detected.

Comparison of the data (Table) obtained for the acetylenes (I) and (II) shows that for the deuteriated diphenylacetylene (II) there is a marked decrease in the ion current for the $(M-1)^+ - C_2H_2$ ion (d) and an increase in the $(M-1)^+$ $-C_2HD$ and $(M-1)^+ - C_2D_2$ ion currents. Normaliza tion of the data shown indicates that about 50% hydrogen scrambling between the two phenyl rings occurs in the $C_{15}H_6D_5$ ion (c) prior to acetylene elimination. Mass measurement of the ions at m/e 170, 169, and 168 (see

Table) supports the above results and the fragmentation pathway shown (equation 2).

These data clearly support a ready equilibration of the protons of the phenyl groups in the mass spectrum of the acetylenes (I) and (II) and favour a mechanism by which C-H (or C-D) bonds are broken in the randomization process rather than by a pathway which involves intermediates similar to those generated in a photochemical excitation.^{2c} The hydrogen randomization probably occurs via the acetylene bridge since direct interaction between the protons of the two phenyl rings is unlikely.

I thank Dr. W. D. Jamieson and Mr. D. Embree for their assistance in recording the mass spectra.

(Received, March 24th, 1969; Com. 416.)

¹ K. Jennings, Z. Naturforsch., 1967, 22a, 454.

² (a) R. G. Cooks, R. S. Ward, and D. H. Williams, Chem. Comm., 1967, 850; (b) I. R. King and G. W. Kirby, J. Chem. Soc. (C), 1966, 1334; (c) D. H. Williams, S. W. Tams, and R. G. Cooks, J. Amer. Chem. Soc., 1968, 90, 2150.
³ R. G. Cooks, I. Howe, S. W. Tams, and D. H. Williams, J. Amer. Chem. Soc., 1968, 90, 4064.
⁴ H. M. Grubb and S. Meyerson in "Mass Spectrometry of Organic Ions," ed. F. W. McLafferty, Academic Press, New York, 1963,

ch. 10. ⁵ R. ∵.

⁶ R. ^C. Alpin and S. Safe, Canad. J. Chem., 1969, in the press.
 ⁶ R. E. Atkinson, R. F. Curtis, D. M. Jones, and J. A. Taylor, Chem. Comm., 1967, 718.