Ring-opening Reaction in the Thiophen Series: Reaction between 3,4-Dinitrothiophen and Secondary Amines[†]

By C. DELL'ERBA, D. SPINELLI,*1 and G. LEANDRI

(Istituto di Chimica dell'Università, Via Pastore 3, Genova, Italy, 16132)

In the course of our work¹ on nucleophilic substitution in the thiophen series we reported that 3,4-dinitrothiophen reacts with sodium thiophenoxide to give phenyl 2-(4-nitro)thienyl sulphide via a cinenucleophilic substitution.²

We have now observed that 3,4-dinitrothiophen (I) reacts with piperidine in methanol at room temperature to give a vellow compound (II) (m.p. 200°) and H₂S. Analytical data (C, H, N; S absent; molecular weight) for compound (II) correspond to the formula $C_{14}H_{22}N_4O_4$. Yields of H_2S and (II) are consistent with reaction:

$$\begin{array}{c} O_{2}N \\ & \swarrow \\ S \end{array} \xrightarrow{NO_{2}} + 2C_{5}H_{10}NH \longrightarrow C_{14}H_{22}N_{4}O_{4} + H_{2}S \\ (II) \\ (II) \end{array}$$

The ring-opening of 3,4-dinitrothiophen has no parallel in other aromatic systems. Compound (II) has been shown to be 1,4-dipiperidino-2,3-dinitrobutadiene $C_5H_{10}\mathrm{N}{\cdot}CH:C(\mathrm{NO}_2){\cdot}C(\mathrm{NO}_2):CH{\cdot}\mathrm{N}C_5H_{10} \mbox{ on the basis of }$ n.m.r. spectral data (60 Mc./sec., CDCl_3), τ 1.45 (s, 1H), 6.48 (m, 4H), and 8.34 (m, 6H) and the u.v. absorption maximum (λ_{max} 360 nm., log ϵ 4.5) characteristic of a nitro-enamine group.3

3,4-Dinitrothiophen reacts in a similar way with various other secondary amines (see Table).

According to Gronowitz's nomenclature,⁴ the reaction is a "nonbenzoid" reaction of a thiophen compound.

Other instances of ring opening in the thiophen series are known, e.g., decomposition of organolithium compounds,5 catalytic desulphurations,6 or a hydrolytic process in hindered thiophens by action of Derbyshire and Waters' reagent;⁷ *i.e.*, drastic conditions are necessary.

TABLE

$XHC: C(NO_2) \cdot C(NO_2): CHX$

	х			Colour	M.p.
Morpholino NMe ₂ NEt ₂ NPrn	 	•••	•••	Yellow Yellow Orange-yellow	260° 207° 154°
111 2	••	••	••	Orange-yenow	141

We thank the Italian Research Council (C.N.R.) for financial support.

(Received, March 10th, 1969; Com. 342.)

† Presented at "Troisième Symposium sur les Composés Organiques Sulfurés," Caen, 21-25 May, 1968. Part of a series dealing with the reactivity of thiophens: for previous papers see refs. 1 and 2.

[†] Present address: Institute of Organic Chemistry, Faculty of Pharmacy, University of Sassari, Italy, 07100.

¹ D. Spinelli, G. Guanti, and C. Dell'Erba, J. Heterocyclic Chem., 1968, 5, 323 and previous papers. ² C. Dell'Erba, D. Spinelli, and G. Leandri, Gazzetta, in the press.

⁶ J. Marchetti and V. Passalacqua, Ann. Chim. (Italy), 1967, 57, 1266.
⁶ S. Gronowitz, in "Organosulfur Chemistry," ed. M. J. Janssen, Interscience, New York, 1967, pp. 119—141.
⁶ M. Rings, Dissertation, Universität Heidelberg, 1966, quoted in R. W. Hoffmann, "Dehydrobenzene and Cycloalkynes," Academic Press, New York, 1967, p. 290. ⁶ S. Gronowitz, Adv. Heterocyclic Chem., 1963, 1, 108, and references therein.

⁷ S. Gronowitz and G. L. Borgen, Acta Chem. Scand., 1965, 19, 1180.