Structure of a Nitrido-bridged Ruthenium Complex

By MARIA CIECHANOWICZ and A. C. SKAPSKI*

(Chemical Crystallography Laboratory, Imperial College, London, S.W.7)

Summary In the crystal structure of $K_3[Ru_2NCl_8(H_2O)_2]$ the complex ion is nitrido-bridged with very short Ru–N distances.

TRANSITION-METAL μ -nitrido complexes are rare,^{1,2} and no structural information exists about them. Cleare and Griffith³ have recently shown, on the basis of spectroscopic data that the compounds $K_3[Ru_2NX_8(H_2O)_2]$ (X = Cl or Br) belong to this category. We have determined the crystal structure of $K_3[Ru_2NCl_8(H_2O)_2]$ and find that the complex ion is indeed nitrido-bridged with very short Ru–N distances of 1.718 Å.

Potassium μ -nitrido-bis[tetrachloroaquoruthenate(IV)] crystallises from dilute hydrochloric acid as deep red plates which are monoclinic. The unit-cell dimensions are $a = 15\cdot89$, $b = 7\cdot34$, $c = 8\cdot16$ Å, $\beta = 120\cdot4^{\circ}$, $U = 820\cdot8$ Å³, $D_m = 2\cdot64$, $D_c = 2\cdot64$ g.cm.⁻³ for Z = 2, space group C2/m.

The structure was solved by Patterson and Fourier methods on the basis of 702 independent reflections, recorded with $\operatorname{Cu-}K_{\alpha}$ radiation and estimated visually. Least-squares refinement, using isotropic temperature factors for all atoms, has now reached R = 0.094.

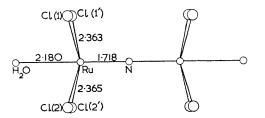


FIGURE. The $[Ru_2NCl_8(H_2O)_2]^{3-}$ ion. The mirror plane is in the plane of the paper. Standard deviations are: Ru-N, 0.003; Ru-Cl, 0.006; Ru-O (water), 0.026 Å.

The structure contains the $[Ru_2NCl_8(H_2O)_2]^{3-}$ ion which has 2/m crystallographic symmetry, with the bridging nitrogen atom lying on a centre of symmetry. The Figure shows that the ruthenium atoms, which lie on mirror planes, have a distorted octahedral co-ordination with water molecules *trans* to the nitrogen. The Ru–N–Ru bridge is very short with Ru–N distances of 1.718 Å. There is therefore multiple bonding present with a considerable amount of π -character.^{1,4} The distance may be compared with Ru–O distances of 1.80 Å found in [Ru₂OCl₁₀]^{4–} (ref. 5) and Re–O of 1.86 Å in [Re₂OCl₁₀]^{4–} (ref. 6).

The chlorine atom configuration is *eclipsed*—this unusual feature is a consequence of the rigidity of the multiple Ru–N–Ru bond, and is similar to that found in the Re₂Cl₈^{2–} ion.⁷ The chlorine atoms are moved away from the nitrogen such that the N–Ru–Cl angles are $\approx 95^{\circ}$ (see Table) and the distances between the eclipsed chlorines are

IABLE

Angle					σ
N-Ru-Cl(1)		••		94.1	0.2
N-Ru-Cl(2)		• •	• •	$95 \cdot 1$	0.2
O-Ru-Cl(1)	••	••	••	$85 \cdot 4$	0.4
O-Ru-Cl(2)				85.1	0.4
Cl(1)-Ru-Cl(1')			••	89.5	0.2
Cl(1)-Ru-Cl(2)		••		90.0	0.2
Cl(2)-Ru-Cl(2')	••	••	••	89.0	0.5
N-Ru-O	••	• •	••	179.7	0.5

>3.8 Å. This is much longer than is found in Re₂Cl₈²⁻ (3.32 Å) and suggests that this bending is because of the π -bonding rather than simply because of packing considerations (the Ru-Ru distance of 3.44 Å would allow sufficient clearance for an N-Ru-Cl angle of 90°). The Ru-Cl distances are of usual length. The Ru-O (water) distance of 2.18 Å is rather long. This may be because of the bending of the chlorines towards the water molecule, although a *trans*-influence is another possibility.

There are two crystallographically independent potassium ions in the structure. Both are co-ordinated to eight chlorines at the corners of a distorted cube, with K-Cl distances of 3.19-3.37 Å. In both cases there are two more distant neighbours sticking out of opposite faces of the cube; an oxygen at 3.42 and a nitrogen at 3.76 Å in one case, and two nitrogens at 3.67 Å in the other.

We thank Dr. M. J. Cleare and Dr. W. P. Griffith for providing us with crystals.

(Received, March 28th, 1969; Com. 438.)

- ¹ J. Chatt and B. T. Heaton, Chem. Comm., 1968, 274.
 ² F. P. Dwyer and J. W. Hogarth, J. Proc. Roy. Soc. New South Wales, 1950, 84, 117.
 ³ M. J. Cleare and W. P. Griffith, Chem. Comm., 1968, 1302.
 ⁴ D. J. Hewkin and W. P. Griffith, J. Chem. Soc. (A), 1966, 472.
 ⁵ A. M. Mathieson, D. P. Mellor, and N. C. Stephenson, Acta Cryst., 1952, 5, 185.
 ⁶ J. C. Morrow, Acta Cryst., 1962, 15, 851.
 ⁷ F. A. Cotton and C. B. Harris, Inorg. Chem., 1965, 4, 330.