(Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, Australia 5001)

SUBSTITUTION reactions of metal complexes containing S-bonded sulphito-ligands are remarkably rapid.¹ We report some substitution reactions of sulphito-complexes whose fast rates arise from abnormally low enthalpies of activation [see (2) below]. This suggests that the weakening of the ligand bond *trans* to the S-bonded sulphite-ligand is a prime cause of the *trans*-labilizing effect of this ligand. This lability is also manifested in solid-state reactions [see (3) below]. We also report the ability of the sulphite anion to substitute rapidly on co-ordinated aquoligands [see (1) below], and show in (4) that sulphito-ligands can undergo an unusual mutual redox reaction with a cobalt(III) centre with the production of sulphite radical anions.

The rapid addition of sulphite ion to trans-Co en₂OH,OH₂²⁺

When aqueous solutions containing trans-Co en_2OH,OH_2^{2+} and SO_3^{2-} are mixed in the molar ratio 1:2 at pH 7.5 and 25°, trans-Co $en_2(SO_3)_2^{-}$ is formed quantitatively (half-time 0.7 sec.). In an equimolar mixture of the reactants, all the sulphite becomes initially bound in trans-Co $en_2(SO_3)_2^{-}$ (half-time 0.7 sec.). The resultant solution which still contains 50% unreacted trans-Co en_2OH,OH_2^{+} , is then transformed quantitatively (half-time 6.2 sec.) to the final product trans-Co $en_2SO_3OH_2^{+}$. This unusual sequence of reactions arises because, as is shown in (2) below, the trans-Co $en_2SO_3OH_2^{+}$ is much more labile to sulphite substitution than the reactant trans-Co en_2OH,OH_2^{+} .

Reaction half-times for

trans-Co en₂OH,OH₂²⁺ + SO₃²⁻
$$\rightarrow$$

trans-Co en₂SO₃OH₂⁺

increase sharply above and below pH 7.5 where optimum concentrations of both reactive species are established.

Both cis- and trans-Co $en_2(OH)_2^+$ undergo sulphite substitution at pH >12, with half-times of 10—100 hr. Their relative inertness to sulphite substitution compared to trans-Co en_2OH,OH_2^+ is analogous to the much faster isomerization and water-exchange reactions of the hydroxoaquo-complex,² but the sulphite addition reaction is at least 20 times faster than these other reactions. Since rapid substitution of SO_3^{2-} only occurs in cobalt(III) complexes with aquo-ligands, it is suggested that substitution proceeds via addition to the oxygen of the aquo-ligand followed by rapid intramolecular rearrangement of the *O*-bonded sulphito-complex to the *S*-bonded form. We have not detected the *O*-bonded intermediate.

(2) Rapid substitution reactions of trans-Co en_2SO_3,OH_2^+

Experiments using $H_2^{18}O$ have shown that the aquoligand of *trans*-Co en_2SO_3,OH_2^+ exchanges completely with the solvent within 45 sec. at pH 6.5 and 32°. Under the same conditions, the half-time for exchange of the oxygen atoms of the sulphito-ligand is >15 hr., very much slower than that of the free sulphite anion.

Stopped-flow measurements show that sulphite substitution of *trans*-Co en_2SO_3 , OH_2^+ proceeds with half-times in the msec. range by a dissociative mechanism:

· --

(I) trans-Co en₂SO₃, OH₂+
$$\rightleftarrows$$
 Co en₂SO₃+ + OH₂
(k_{-OH_2}, k_{OH_2})
(II) Co en₂SO₃+ + SO₃²⁻ \rightleftharpoons trans-Co en₂(SO₃)₂-
(k_{SO_3}, k_{-SO_3})

For this reaction scheme, the rate constant for aquorelease is $k_{-OH_2} = 13\cdot2 \pm 0.9 \text{ sec.}^{-1}$ at 25° with $\Delta H^{\ddagger}_{-OH_2} = 15\cdot9 \pm 1\cdot0$ kcal. mole⁻¹ and $\Delta S^{\ddagger}_{-OH_2} = 0\cdot2 \pm 4$ e.u., whilst for sulphite release from *trans*-Co en₂(SO₃)₂⁻, $k_{-SO_2} = 0\cdot111 \pm 0\cdot004$ sec.⁻¹ at 25° with $\Delta H^{\ddagger}_{-SO_2} = 20\cdot4 \pm 0\cdot8$

kcal. mole⁻¹ and $\Delta S^{\ddagger}_{-SO_{3}} = 6 \pm 3$ e.u. These activation enthalpies are much lower than those normally observed for substitution on cobalt(III) complexes.³

The relative reactivity of water and sulphite ion towards the intermediate Co $en_2SO_3^+$ is $k_{OH_2}[H_2O]/k_{SO_3} = 6 \times 10^{-3}$. Azide ion and hydrogen sulphite ion also compete efficiently with water for the intermediate, and the same limiting rate constant for substitution at high nucleophile concentration is observed for N_3^- (12.9 \pm 0.9 sec.⁻¹) as for SO_3^{2-} (13.2 \pm 0.9 sec.⁻¹). Above pH 12, hydroxide ion competes very efficiently with $k_{\rm SO_3}/k_{\rm OH} = 1.1 \times 10^{-2}$. Sulphite substitution of Co en₂SO₃OH therefore involves an equilibrium

(III) trans-Co
$$en_2SO_3OH + SO_3^{2-} \rightleftharpoons$$

trans-Co $en_2(SO_3)_2^- + OH^-$

with $K_{\text{III}} = 0.385 \pm 0.018$ at 25°. Again a dissociative mechanism operates with $k_{-OH} > 2 \text{ sec.}^{-1}$.

(3) Dehydration of solid trans-[Co en₂SO₃OH₂]ClO₄,H₂O

In the solid state, brown crystalline trans-[Co en₂SO₃OH₂]-ClO₄, H₂O is transformed to a red amorphous powder of empirical composition Co $en_2SO_3CIO_4$ with the loss of 2.0 moles of water. The reaction, detectable even at room temperature, is readily followed by mass spectrometry near 100° , where 10 min. is sufficient for complete reaction. The rate of loss of the aquo-ligand is at least 10³ times faster than that in cis-[Co en₂SO₄,OH₂]ClO₄ which forms $[Co en_2SO_4]ClO_4$.⁴ Thus a marked trans-labilizing effect of the sulphito-ligand operates also in the solid state.

The u.v.-visible reflectance spectrum of red [Co en₂SO₃]-ClO₄ is consistent with an O-bonded sulphito-ligand. Although a bidentate sulphito-structure is one possibility suggested by the i.r. spectrum, a polymeric structure based on the unit [.. Co en₂-O-SO-O · ·] seems more probable.⁵ Isotopic enrichment studies with H₂¹⁸O show that, before

(4) Internal oxidation-reduction in trans-Co $en_2SO_3OH_2^+$ in perchloric acid

The S-bonded sulphito-ligand is very inert to both acid and base hydrolysis but at elevated temperatures and in perchloric acid media ranging from 0.01-7 m, trans-Co $en_2 {\rm SO}_3 {\rm OH}_2{}^+$ quantitatively forms ${\rm Co}_{aq}{}^{2+}$ and dithionic acid. Radical scavengers like Fe^{2+} and O_2 reduce the $H_2S_2O_6$ yield but do not affect the rate of Co²⁺ formation. The reaction can therefore be written:

(IV) trans-Co en₂SO₃OH₂⁺ + 5H⁺
$$\rightarrow$$

Co_{8q}²⁺ + HSO₃ + 2 enH₂²⁺ (slow)
2HSO₃ \rightarrow H₂S₂O₆ (fast)

At 73°, $k_{\rm IV}=3.2$ imes 10⁻⁴ sec.⁻¹ with $\Delta H^{\ddagger}_{\rm VI}=32.8$ \pm 0.5 kcal. mole⁻¹ and $\Delta S^{\ddagger}_{IV} = 20 \pm 2$ e.u. Check experiments have verified that, in sealed vessels, there is no measurable concentration of Co_{aq²⁺} produced in acid solutions of SO_{3²⁻} and cis- and trans-Co $en_2(OH_2)_2^{3+}$ which are possible intermediates in this decomposition. Reaction IV is therefore an example of an inner-sphere redox reaction. The alternative acid hydrolysis of trans-Co en₂SO₃OH, only becomes detectable in 8-11M-HClO₄ media.

We thank the Australian Research Grants Committee for support of this work, and Dr. R. B. Moyes (University of Hull) for his advice on mass spectrometry.

(Received, March 31st, 1969; Com. 452.)

¹ J. Halpern, R. A. Palmer, and L. M. Blakely, J. Amer. Chem. Soc., 1966, 88, 2877; P. H. Tewari, R. H. Gaver, H. K. Wilcox, and W. K. Wilmarth, Inorg. Chem., 1967, 6, 611; Hon Gee Tsiang and W. K. Wilmarth, ibid., 1968, 7, 2535.

² W. Kruse and H. Taube, J. Amer. Chem. Soc., 1961, 83, 1280.
³ F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," Wiley, New York, 1967, 2nd edn., ch. 3.
⁴ C. G. Barraclough and M. L. Tobe, J. Chem. Soc., 1961, 1993.
⁵ M. E. Baldwin, J. Chem. Soc., 1961, 3123.