The Infrared Transmission Spectrum of KMnF₃

By J. M. BARRACLOUGH and D. H. BROWN

(Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow C.1)

and A. P. LANE* and D. W. A. SHARP

(Chemistry Department, The University, Glasgow W.2)

and D. A. PATERSON

(Paisley College of Technology, Paisley, Renfrewshire)

DEVIATION from the ideal cubic perovskite structure in the low-temperature modification of KMnF₃ is only sufficient to cause the i.r.-forbidden v_4 (F_{2u}) mode to be observed. Force-constant data indicates that v_4 occurs at higher frequencies than v_2 .

At temperatures above $184^{\circ}\kappa$ KMnF₃ adopts the ideal cubic perovskite structure of SrTiO₃¹ despite compression of the Mn²⁺ and F⁻ ions (Goldschmidt tolerance factor =0.88). Group theoretical considerations predict that for compounds with the cubic perovskite structure there should be five triply degenerate modes of vibration $(4F_{1u} + F_{2u})$ of which one (F_{1u}) is an acoustic mode having zero energy at the centre of the Brillouin zone and hence does not contribute to the optical spectrum. Applying selection rules to the remaining modes, three are i.r. allowed while one (F_{2u}) is forbidden. The vibrational spectrum of KMnF₃ at temperatures above 184° κ should therefore consist of three bands *only*.

The frequencies of the observed i.r. bands at various temperatures are given in Table 1. At 300° K all the frequencies were 15 cm.^{-1} higher than those reported by Axe and Petit² but this is to be expected since these workers obtained their frequency values from a Kramers-Kronig analysis of reflectivity data. Only three bands were

CHEMICAL COMMUNICATIONS, 1969

observed at 300° k and 188° k of which the two above $200\ \text{cm}.^{-1},\ \nu_1$ and $\nu_2,\ \text{are assigned to internal modes of}$ vibration of the MnF_6 octahedron while the band at 130 cm.-1, $\nu_3,$ is a lattice mode. At 77° K ν_1 moves to higher frequencies, due to the decrease of the Mn-F bond distance associated with low-temperature contraction of the crystal lattice, and a new band appears at 265 cm.⁻¹ (also observed when the spectrum was recorded at 168° K but completely disappeared on warming the sample to 188° K).

TABLE 1

Vibrational frequencies (cm.⁻¹) for KMnF₈ at various temperatures

	300° к	188° к	168° к	77° K
ν ₁	410	nr	nr	427
v_2	212	212	208	208
vs	130	130	128	127
ν4	ia	ia	263	265

nr, Not recorded.

ia, Inactive in i.r. spectrum.

It is known that at temperatures below 184° K KMnF_a adopts an orthorhombic phase with the space group D_{2h}^{16} -Ptnm in which the MnF₆ octahedra are not distorted, but twist and tilt relative to each other.³ A factor group

π

Nakagawa et al.⁶ K, H, F, f_1 and f_2 are the M-F bond stretching, F-M-F angle bending, nearest non-bonded fluorine-atom repulsion, $K \cdots F$ interaction and $K \cdots M$ interaction constants respectively.

Symmetry co-ordinates approximating the normal coordinates obtained by Nakagawa et al.⁶ for KNiF₃ were used. The variation of the force constants to obtain the best fit between the experimental and calculated frequencies was based on the additional constraints derived from the fact that the off-diagonal elements of the F-matrix, obtained with symmetry co-ordinates close to the normal coordinates, must be close to zero.

Using the above method, good agreement was obtained between the observed and calculated frequencies. However, the calculated (and observed) frequency for v_4 was higher than that of v_2 whereas Nakagawa et al.,⁶ using a slightly different method of calculation, found the reverse to be true for the perovskite fluoride KNiF₃ and KZnF₃. The vibrational frequencies of KNiF₃ and KZnF₃ were, therefore, calculated using the method employed for KMnF₃ and an even closer agreement was thus obtained with the previously reported frequencies;6 again the calculated frequencies for v_4 in these compounds were found to be higher than those of v_{2} .

ABLE 2.	Calculated and observed	freauen ci es	(cm, -1) for	KMF.	(M = M)	n. Ni	and Zn)
		1,000,000,0000	10////				

	TABLE 2. Culounded and observed frequencies (one. 1 for Thirs (M - Min, 11, and En)									
	KM	nF3	KN	ïF ₈	KN	iF ₈ ª	KZ	nF ₃	KZr	ıF ₃ s
	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.
$v_1 \ (F_{1u})$	411	410	448	447	455	446	423	424	435	430
$v_2 (F_{1u})$	212	212	256	257	250	253	225	226	225	206
$v_3 \left(F_{1u} \right)$	132	130	155	155	144	153	143	144	134	142
$v_4 (F_{2u})$	245	265 "	294	1a.	214	1 a .	258	1a	196	ia

^в Calculated and observed frequencies from ref. 6. ^b Frequency from spectrum recorded at 77° к. ia, Inactive in i.r. spectrum.

analysis⁴ based on this structure gives rise to the following external and internal i.r.-active representations

$$\Gamma$$
 (external) = $B_{1u} + 2B_{2u} + 2B_{3u}$

 Γ (internal) = $6B_{1u} + 7B_{2u} + 7B_{3u}$

indicating that twenty-five bands should be observed in the i.r. spectrum. This in no way correlates with our observed spectrum for the low-temperature modification of KMnF₃.

We therefore suggest that since the displacements of the F and K atoms from cubic co-ordinates in the orthorhombic phase of KMnF₃ are extremely small (ca. 0.25 Å) and the MnF_6 octahedra are not distorted, the overall distortion from cubic crystal symmetry is insufficient to cause either interactions between the molecules in the unit cell or degeneracy splitting of the triply degenerate modes. However, the slight change in atomic co-ordinates will violate the Oh selection rules and the extra band at 265 cm.⁻¹ is therefore assigned to the i.r.-forbidden F_{2n} mode.

This assignment is supported by the calculated frequencies for the vibrational modes of cubic KMnF₃. The force constants were calculated by the method developed by Shimanouchi et al.,⁵ with the potential function used by

¹ K. Knox, Acta Cryst., 1961, 14, 583.

² J. D. Axe and G. D. Petit, Phys. Rev., 1967, 157, 435.

³ O. Beckman and K. Knox, Phys. Rev., 1961, 121, 376.

⁴S. S. Mitra and P. J. Gielisse, *Progr. Infrared Spectroscopy*, 1964, **2**, 47. KMnF₃ with the space group D_{2h}^{16} -Pbnm contains a tetra-molecular unit cell. The only element of symmetry containing invariant atoms apart from the identity E is the (xy) reflection plane. The representation from the factor group analysis for the Raman active modes is:

$$\Gamma = 7A_{1g} + 7A_{2g} + 5B_{2g} + 5B_{3g}$$

⁵ T. Shimanouchi, M. Tsuboi, and T. Miyazawa, J. Chem. Phys., 1961, 35, 1597.
⁶ I. Nakagawa, A. Tsuchida, and T. Shimanouchi, J. Chem. Phys., 1967, 47, 982.

The observed and calculated frequencies of the present study together with those reported for KNiF₃ and KZnF₃ by Nakagawa et al. are presented in Table 2.

The values of the force constants used in the present study are given in Table 3. It should be noted that the

TABLE 3.	Force constants in mdyne/Å for KMF ₃
	(M = Mn, Ni, and Zn)

	KNiF ₃	KZnF ₃	KMnF ₃
K (M–F)	0.739	0.697	0.627
H(F-M-F)	0.0755	0.054	0.0515
$F(\mathbf{F}\cdots\mathbf{F})$	0.077	0.055	0.053
f_1 (K · · · F)	0.138	0.119	0.097
f_2 (K · · · M)	0.01	0.02	0.01

set of force constants given is not unique and an equally good agreement between the observed and calculated frequencies could be obtained using other force constants differing slightly from the set given. The differences are small, however, and the corresponding force constants in the different sets have the same order of magnitude.

(Received, April 14th, 1969; Com. 514.)