Protonation of Some Fluoro-olefin and Acetylene Complexes of Platinum and Reactions of Some Acetylenes and Carbon Monoxide with Carboxylate Complexes of the Type Pt(OCOR)₂(PPh₃)₂

By D. M. BARLEX, R. D. W. KEMMITT,* and G. W. LITTLECOTT (Chemistry Department, The University, Leicester, LE1 7RH)

Summary Some fluoro-olefin and acetylene complexes of the type $Pt(olefin)(PPh_3)_2$ and $Pt(acetylene)(PPh_3)_2$ are converted by trifluoroacetic acid into alkyl and vinyl complexes, respectively; related reactions of acetylenes and carbon monoxide with $Pt(OCOR)_2(PPh_3)_2$, (R = CF_3 or CH_3) are described.

ETHYLENE complexes of rhodium(I), *i.e.* $Rh_2Cl_2(CO)_2(C_2H_4)_2$

and $\operatorname{Rh}(C_2H_4)_2(\pi-C_5H_5)$, add hydrogen chloride to give ethyl complexes;^{1,2} similarly the fluoro-olefin complexes RhCl $(C_2F_3X)(\operatorname{PPh}_3)_2$, (X = F, Cl, or H) give the fluoroethyl complexes, $\operatorname{RhCl}_2(\operatorname{CFXCF}_2H)(\operatorname{PPh}_3)_2$.³ We now find that some platinum fluoro-olefin and acetylene complexes of the type $\operatorname{Pt}(\operatorname{olefin})$ ($\operatorname{PPh}_3)_2$ and $\operatorname{Pt}(\operatorname{acetylene})(\operatorname{PPh}_3)_2$ similarly add one mole of trifluoroacetic acid.

On addition of trifluoroacetic acid to a solution of

 $Pt(CF_3C = CCF_3)(PPh_3)_2^4$ in methylene chloride, the ¹⁹F n.m.r. spectrum of the acetylene complex (measured at 56.4 MHz) is immediately replaced by a new signal which shows a broad multiplet at -5.0 p.p.m. and a quartet centred at -9.3 p.p.m. relative to benzotrifluoride. The quartet is further split into two smaller quartets due to coupling with ¹⁹⁵Pt, J(Pt-F) = ca 130 Hz. This signal is consistent with the group $Pt[C(CF_3)=CHCF_3]^5$ and the complex $Pt(OCOCF_3)[C(CF_3)=CHCF_3](PPh_3)_2$, (I) may be isolated from the solution. The value of about the 11 Hz for $J(CF_3-CF_3)$ indicates a *cis*-arrangement of CF_3 groups.⁵ The complex $Pt(C_2F_4)(PPh_3)_2^6$ also reacts with trifluoroacetic acid to give $Pt(OCOCF_3)(CF_2CF_2H)(PPh_3)_2$, (II), and other platinum fluoro-olefin complexes of this type behave similarly. However, some complexes, e.g. $Pt(PhC \equiv$ CPh)(PPh₃)₂ react further with trifluoroacetic acid to give $Pt(OCOCF_3)_2(PPh_3)_2$, (III) and trans-stilbene. Vinyl and ethyl complexes similar to (I) and (II) have previously been isolated by addition of the olefin or acetylene to the complexes, PtClH(PR₃)₂.^{5,7}

Complexes similar to (I) may also be prepared by reaction

of some acetylenes with $Pt(OCOCF_3)_2(PPh_3)_2$ in a variety of alcohols. Thus in both methanol and ethanol (III) reacts with diphenylacetylene to give $Pt(OCOCF_{*})[C(Ph) =$ $CHPh_{3}(PPh_{3})_{2}$, which shows bands due to $\nu(C=O)$ and $\nu(C=C)$ at 1700 and 1545 cm.⁻¹, respectively. The reaction of hexafluorobut-2-yne with (III) in methanol is somewhat different and gives a mixture of (I) and $Pt(CF_3C \equiv CCF_3)$ (PPh₃)₂. Similarly from the reaction of tetrafluoroethylene and $Pt(OCOCF_3)_2(PPh_3)_2$, $Pt(C_2F_4)(PPh_3)_2$ may be isolated. The products of these reactions appear to be dependent on the nature of the carboxylate group present since diphenylacetylene reacts with $Pt(OCOCH_3)_2(PPh_3)_2$ in methanol to give Pt(PhC=CPh)(PPh₃)₂.

The reactions of carbon monoxide with alcoholic solutions of (III) are quite different and alkoxy-carbonyl complexes, $Pt(OCOCF_3)(CO \cdot OR)(PPh_3)_2$, (R = Me or Et) are formed, which react further with solutions of lithium chloride to give the known complexes, PtCl(CO·OR)(PPh₃)₂.⁸ These reactions are analogous to the known reactions of carbon monoxide with mercuric acetate.9

(Received, March 31st, 1969; Com. 453.)

- ¹ J. Powell and B. L. Shaw, J. Chem. Soc. (A), 1968, 211.
- ² R. Cramer, J. Amer. Chem. Soc., 1965, 87, 4717.
- ³ R. D. W. Kemmitt and D. I. Nichols, Inorg. Nuclear Chem. Letters, 1968, 4, 739.

- ⁶ K. D. W. Kelminitt and D. I. Richols, *Inorg. Watterr Chem. Letters*, 1906, 4, 739.
 ⁴ J. L. Boston, S. O. Grim, and G. Wilkinson, *J. Chem. Soc.*, 1963, 3468.
 ⁵ H. C. Clark and W. S. Tsang, *J. Amer. Chem. Soc.*, 1967, 89, 529, 533.
 ⁶ M. Green, R. B. L. Osborn, A. J. Rest, and F. G. A. Stone, *J. Chem. Soc.* (A), 1968, 2525.
 ⁷ H. C. Clark, K. R. Dixon, and W. J. Jacobs, *J. Amer. Chem. Soc.*, 1968, 90, 2259.
 ⁸ H. C. Clark, K. R. Dixon, and W. J. Jacobs, *Chem. Comm.*, 1968, 548.
 ⁹ G. E. Coates, M. L. H. Green, and K. Wade, "Organometallic Compounds," Methuen, London, 1967, vol. 1, p. 151.