The Crystal Structure of $\mathrm{Ru}_{6} \mathbf{C}(\mathbf{C O})_{17}$

By A. Sirigu*
(Laboratorio di Chimica Generale, Istituto Chimico, Università di Napoli, 80134 Napoli, Italy)
and M. Bianchi and E. Benedetti
(Istituto di Chimica Organica Industriale, Università di Pisa, Italy)

Controlled thermal decomposition of $\left[\mathrm{Ru}(\mathrm{CO})_{4}\right]_{3}$ gave ${ }^{1}$ a cluster ruthenium carbonyl complex, assigned the structure $\mathrm{Ru}_{6}(\mathrm{CO})_{18}$ from analytical data. Johnson, Johnston, and Lewis ${ }^{2}$ independently synthesized what appeared to be the same compound and some of its arene derivatives; on the basis of mass spectral data they assigned it the structure $R u_{6} \mathrm{C}(\mathrm{CO})_{17}$. A preliminary account of the structure of the mesitylene derivative $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}\right)$ has been given by Mason and Robinson. ${ }^{3}$ The formulation of the compound as a carbide was confirmed.

We have now determined the structure of the ruthenium carbonyl prepared by Piacenti et al. and show that the correct structure is $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}$ (Figure). The crystals are monoclinic with $a=24.06 \pm 0.10 \AA, b=9.36 \pm 0.04 \AA$, $c=17.70 \pm 0.08 \AA, \beta=96^{\circ} 22^{\prime} \pm 30^{\prime}$, space group $P 2 / c$ or Pc, $Z=6$.

The structure was determined by direct Sayre-Zachariasen and Patterson methods. The refinement was carried out for 3070 observed reflections (Weissenberg-photographic data, visual estimation of the intensities) by the block-diagonal least-squares method in the space group $P 2 / c$. The present value of R is $0 \cdot 139$.

Figure. Only the molecule located at the general position in the unit cell is shown; the molecule at the special position, along a twofold axis, is not substantially different. The carbon atom is at the centre of the octahedral metal cluster. Mean $\mathrm{Ru}-\mathrm{C}$ distance $2.05 \AA$ [maximum deviation $0.07 \AA, \quad \sigma \quad(\mathrm{Ru}-\mathrm{C})=0.05 \AA$]: $\mathrm{Ru}(1)-\mathrm{Ru}(2)=2.885(6), \mathrm{Ru}(1)-\mathrm{Ru}(3)=2.951(6), \mathrm{Ru}(1)-\mathrm{Ru}(5)=$ $2 \cdot 827(5), \quad \mathrm{Ru}(1)-\mathrm{Ru}(6)=2 \cdot 927(5), \quad \mathrm{Ru}(2)-\mathrm{Ru}(3)=2.897(5)$, $\mathrm{Ru}(2)-\mathrm{Ru}(4)=2 \cdot 969(5), \mathrm{Ru}(2)-\mathrm{Ru}(5)=2 \cdot 855(6), \mathrm{Ru}(3)-\mathrm{Ru}(4)=$ $2.917(6), \mathrm{Ru}(3)-\mathrm{Ru}(6)=2 \cdot 840(6), \mathrm{Ru}(4)-\mathrm{Ru}(5)=2 \cdot 858(6)$, $\mathrm{Ru}(4)-\mathrm{Ru}(6)=2.872(7), \mathrm{Ru}(5)-\mathrm{Ru}(6)=3.034(5)$ (σ values in parentheses.)
(Received, April 14th, 1969; Com. 510.)
${ }^{1}$ F. Piacenti, M. Bianchi, and E. Benedetti, Chem. Comm., 1967, 775.
${ }^{2}$ B. F. G. Johnson, R. D. Johnston, and J. Lewis, Chem. Comm., 1967, 1057.
${ }^{3}$ R. Mason and W. R. Robinson, Chem. Comm., 1968, 468.

