Negative Parent Ion in the Mass Spectrum of Hexacarbonylvanadium

By RICHARD E. SULLIVAN, MICHAEL S. LUPIN, and ROBERT W. KISER*

(Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506)

Summary The first observation of a parent negative ion in the mass spectra of metal carbonyls is reported for $V(CO)_6$.

A SIGNIFICANT feature in the negative-ion mass spectra of metal carbonyls is the absence of the parent-molecule ion.¹⁻³ This is consistent with the view,⁴ based on calculations for $Ni(CO)_{4}^{5}$ and $Cr(CO)_{6}^{6}$ that the captured electron would have to be placed in an anti-bonding molecular orbital. The case of the paramagnetic hexacarbonylvanadium is different; the addition of an electron to the molecule to give the anion $V(CO)_6^-$ (which has been observed in solution) is expected since molecular orbital calculations indicate that the added electron would enter a bonding molecular orbital.7 We report the observation of gaseous $V(CO)_6^-$ formed by electron capture from $V(CO)_6$, the first observation of a parent negative ion in metal carbonyls.

The complete negative ion mass spectrum of $V(CO)_6$ is given in the Table. The most intense negative ion corresponds to loss of one ligand from the parent molecule; also to be noted is the decrease in relative abundances with increasing fragmentation, a feature characteristic of other transition metal carbonyls.^{1,2} Two metastable peaks were observed, corresponding to the transitions $V(\rm CO)_5^- \rightarrow$ $V(CO)_4^- + CO$ and $V(CO)_4^- \rightarrow V(CO)_3^- + CO$. By analogy with the negative^{1,8} and positive⁹ ion mass spectra of metal carbonyls, the $V(CO)_6^-$ ion is expected to fragment by a stepwise process; these data support the earlier expectations. However, the formation of $V(CO)_6^-$ by a simple

- ¹ R. E. Winters and R. W. Kiser, J. Chem. Phys., 1966, 44, 1964.

- ¹ R. E. Winters and R. W. Kiser, J. Chem. Phys., 1966, 44, 1964.
 ² S. Pignataro, A. Foffani, F. Grasso, and B. Cantone, Z. phys. Chem. (Frankfurt), 1965, 47, 106.
 ³ R. E. Winters and R. W. Kiser, J. Phys. Chem., 1965, 69, 1618.
 ⁴ R. W. Kiser, "Mass Spectroscopy of Organometallic Compounds," in "Characterization of Organometallic Compounds," Part 1, ed. M. Tsutsui, Interscience, New York, 1969, p. 181.
 ⁵ W. C. Nieuwpoort, Philips Res. Rep. Suppl., 1965, No. 6.
 ⁶ H. B. Gray and N. A. Beach, J. Amer. Chem. Soc., 1963, 85, 2922.
 ⁷ N. A. Beach and H. B. Gray, J. Amer. Chem. Soc., 1968, 90, 5713; K. G. Caulton and R. F. Fenske, Inorg. Chem., 1968, 7, 1273.
 ⁸ K. E. Sullivan and R. W. Kiser J. Chem. Phys. 1968, 49, 1978.
- - ⁸ R. E. Sullivan and R. W. Kiser, J. Chem. Phys., 1968, 49, 1978.
 ⁹ F. E. Winters and R. W. Kiser, Inorg. Chem., 1964, 3, 699.

 - 10 R. P. M. Werner and H. E. Podall, Chem. and Ind., 1961, 144.

electron capture process (presumably of secondary electrons) is not the only decomposition pathway available, and some of the $V(CO)_5^-$ may be formed by dissociative electron capture.

TABLE

Relative abundance at 70 ev(uncorr.)

Ion			Abundance		Ion	Abundance
V(CO)-			••	0.1	$V(CO)_4^-$	60
$V(CO)_2^-$		• •	••	1.0	$V(CO)_{5}^{-}$	100
$V(CO)_{5}^{-} \rightarrow$	$-V(CO)_4$	+ co		0.3	$V(CO)_6$	0.02
$V(CO)_3$	••	••	••	10.0		
$V(CO)_4 \rightarrow$	$-V(CO)_3$	+ CO		0.1		

All measurements were performed with an Hitachi RMU-6E double-focussing mass spectrometer at an ionizing energy of 70 ev(uncorr.). Inlet system and ion source temperatures were $< 40^{\circ}$ to suppress any thermal decomposition of the metal carbonyl. Sample pressures in the region between the electrostatic and magnetic sectors were ca. 3×10^{-6} torr. The hexacarbonylvanadium was prepared from $Na(diglyme)_2 V(CO)_6$ by the method of Werner and Podall¹⁰ and used within two hours of preparation. Tris(trifluoromethyl)-s-triazine was used as a convenient mass calibrant to bracket the $V(CO)_6^-$ ion $(m/e\ 219)$ with ions at m/e 216 and 221.

(Received, April 28th, 1969; Com. 581.)