
Failure of the Chemical Shift Method of Conformational Analysis in Quaternary Salts from 4-Alkylpiperidines

By R. BRETTLE, D. R. BROWN, J. MCKENNA,*[†] and J. M. MCKENNA (Chemistry Department, The University, Sheffield S3 7HF)

Summary Conformational free-energy values for 4-substituents (or 4,4-geminal pairs) in 1-benzylpiperidine benzobromides cannot be derived from the chemical-shift differences between *ax*- and *eq*-1-benzyl methylene protons.

THE marked chemical-shift differences between ax- and eq-1-benzyl methylene protons in 1,1-dibenzylpiperidinium salts¹ led us to examine the applicability of the related n.m.r. method of conformational analysis² to a range of 4-substituted salts (see Table). With the usual (if questionable) assumption that 4-alkyl substituents do not affect the chemical shifts of protons in 1-substituents, Δv° for the 4-Bu^t salt should be greater than Δv for any other salt, the equilibrium constant for (II) \rightleftharpoons (I) (R¹ = alkyl; R² = H or alkyl) should be given by $(\Delta v^{\circ} + \Delta v)/(\Delta v^{\circ} - \Delta v)$, and the mean chemical shift of ax- and eq-1-benzyl methylene

protons should coincide with the value for the corresponding protons in the 4-unalkylated salt in spectra of appropriate mixtures. The ease of synthesis of such a wide range of piperidinium salts makes possible a more critical and comparative assessment of the applicability of the n.m.r. method than has previously been possible in studies with cyclohexane derivatives.

TABLE

Chemical-shift differences (Δv) between ax- and eq-1-benzyl methylene protons in 4-substituted-1-benzyl-piperidine benzobromides, and offsets (+: upfield offset; -: downfield) in mean signal position relative to that for benzyl methylene protons in 1-benzylpiperidine benzobromide. Figures are for 60 MHz spectra of CDCl₃ solutions at 35°, extrapolated to zero concentration; offsets from spectra of mixed salts. Precision ca. ± 0.1 Hz.

4-Substituents in 1-benzylpiperidine benzobromide	Δν (Hz)	Mean offset (Hz)
H,H	0.0	0.0
Me,H	$22 \cdot 2$	+0.4
Et,H	22.6	+0.6
Pr ⁱ ,H	23.8	+1.4
Bu ^t ,H	$23 \cdot 4 (= \Delta v^{\circ})$	+2.7
Me,Et	7.4	+ 0.9
Me,Pr ⁱ	17.1	+1.9
Ph,H	27.5	-6.2
Me,Ph	21.2	-0.4
$PhCH_2, H$	33.5	-1.8

† Present address: Mellon Institute, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213.

Our results strikingly demonstrate the progressive failure of the method for the 4-alkyl salts, not only from the increasing values for mean offset (3rd column in Table) but also from the fact that Δv (second column) for Prⁱ is greater than for Bu^t. Previous doubts² about the utility of the n.m.r. procedure are thus convincingly validated. Deviations are (understandably) more obvious still in salts with

(Received, March 24th, 1969; Com. 412.)

¹ R. W. Horobin, J. McKenna, and J. M. McKenna, Tetrahedron, 1966, Suppl. 7, 35; D. R. Brown, J. McKenna, and J. M. McKenna, J. Chem. Soc. (B), 1967, 1195. ^a For recent reviews see E. L. Eliel and R. J. L. Martin, J. Amer. Chem. Soc., 1968, **90**, 682; S. Wolfe and J. R. Campbell, Chem.

Comm., 1967, 872.