Mixed Nickel Co-ordination in a Binuclear Complex with a Short Nickel–Nickel Bond

By M. BONAMICO,* G. DESSY, and V. FARES

(Laboratorio di teoria e struttura elettronica e comportamento spettrochimico dei composti di coordinazione del CNR e Istituto di Chimica Generale e Inorganica, Università di Roma, Roma, Italy)

THE co-ordination behaviour of carboxylic anions is quite varied and the compounds of carboxylic acid derivatives have been divided by structure into five groups.¹ When the two terminal atoms of the ligand bond with two metal atoms, the ligand forms the syn-syn configuration giving a bridged structure [like copper(II) acetate monohydrate²]. There is no known nickel complex with this type of structure; however, a binuclear complex of nickel(II)bis-1,3diphenyltriazenide,³ in which the NNN-group closely resembles the OCO-group, has been reported.

We report the preliminary results of an X-ray analysis on nickel monothiobenzoate which is found to be a binuclear complex with a bridging acetate cage structure. The two nickel atoms are separated by 2.49 Å, and one is co-ordinated by a molecule of ethyl alcohol. Our interest in this compound is related to our structural studies on metal dithiocarboxylates^{4,5,6} and the X-ray analysis was undertaken in conjunction with the parallel research of Furlani and co-workers⁷ on their spectrochemical and magnetic behaviour.

Crystals of $C_{30}H_{26}N_{i_2}O_5S_4$ are red-brown triclinic prisms; $a = 10.465 \pm 0.010$, $b = 11.644 \pm 0.010$, $c = 12.680 \pm 0.010$ Å $\alpha = 91^{\circ}40'$, $\beta = 93^{\circ}5'$, $\gamma = 93^{\circ}10'$, U = 1540 Å³; $D_m = 1.54 \pm 0.02$ g.cm.⁻³ (by flotation); Z = 2, $D_c = 1.536$ g.cm.⁻³; space group $P \ I(C_t^1, \text{ No. } 2)$. Data are taken from Weissenberg photographs, using Cu- K_{α} ($\lambda = 1.5418$ Å) radiation.

The structure was determined by Patterson and Fourier methods using 2096 independent reflections. Co-ordinates and anisotropic temperature factors were refined by least squares to the present set of values, corresponding to R = 0.09. The structure consists of binuclear molecules of composition (PhCOS)₄Ni₂·C₂H₅OH, a pair of which, related by a centre of symmetry, forms a dimer through Ni-S interactions (Figure).

The two nickel atoms Ni(1) and Ni(2) appear to be different. Ni(1) is planar and bonded to four oxygen atoms belonging to four different thioacetate groups; its co-ordination is completed by the oxygen atom of ethyl alcohol and the other nickel atom. Ni(2) also has six neighbours: it lies in the plane of the four sulphur atoms of the thioacetate groups and forms short bonds with a sulphur

atom belonging to the centrosymmetrically related molecule and with Ni(1). The co-ordination for Ni(1) is tetragonally distorted octahedral. The five Ni–O bond lengths are in the range $2 \cdot 00 - 2 \cdot 09$ Å ($\sigma = 0 \cdot 009$ Å) which is a typical

FIGURE. [100] projection, on the y-z plane. One molecule is shown in total, and only a part of the centrosymmetrically related molecule is shown. Adjacent oxygen atoms subtend with Ni(1) angles near 90°, the same as do sulphur atoms in the plane with Ni(2). The average value for Ni(1)- \hat{O} -C is 123°, for Ni(2)-S-C 105°, and for \hat{O} -C-S 123°.

range for Ni–O bonds in octahedral structures, and the nickel-nickel distance of 2·49 Å ($\sigma = 0.004$ Å) is equal to that found in metallic nickel.⁸ For Ni(2), instead, the four closest sulphur atoms are in the range 2·22—2·23 Å ($\sigma = 0.004$ Å), a range typical of Ni–S bonds in tetra-co-ordinated complexes of nickel. However, the Ni–Ni interaction and the fifth Ni–S bond length of 2·82 Å ($\sigma = 0.005$ Å) in the near axial positions complete a distorted six-co-ordination.

The phenyl groups are not completely coplanar with respect to the O-C-S groups, 15° being about the average angle between them, and the average C-phenyl group distance is 1.50 Å. These results appear to be in agreement with the interpretation of the u.v. spectra of the free ligand.9

Only one nickel-nickel bond length of the same order of magnitude (2.38 Å) has been found until now.³ Although

 ¹ C. Oldham, Progr. Inorg. Chem., 1968, 10, 223.
² J. N. van Niekerk and F. R. L. Schoening, Acta Cryst., 1953, 6, 227.
⁸ M. Corbett and B. F. Hoskins, Chem. Comm., 1968, 1602.
⁴ M. Bonamico and G. Dessy, Chem. Comm., 1968, 483.
⁵ M. Bonamico, and G. Dessy, Ricerca Sci., 1968, 38, 1106.
⁶ M. Bonamico, G. Dessy, and V. Fares, Chem. Comm., 1969, 329.
⁷ C. Furlani and M. L. Luciani, Inorg. Chem., 1968, 7, 1586; C. Furlani, M. L. Luciani, and R. Candori, J. Inorg. Nuclear Chem., 1968, 0, 3121: and further work in progress. 30, 3121; and further work in progress.

- ⁸ L. E. Sutton, Chem. Soc. Special Publ., Nos. 11 and 18, 1958 and 1965.
- ⁹ M. Bossa, Personal communication.

698

it is difficult to decide if the metal-metal interaction is structure-determining, in this case we consider that the contribution of the nickel-nickel interaction is decisive because the two intersecting rings bridging the nickel atoms appear to be twisted in order to permit the nickel-nickel separation of 2.49 Å.

(Received, April 25th, 1969; Com. 567.)