
Effects of Ligand Configuration upon Rhodium-103 Chemical Shifts

By W. McFarlane

(Chemistry Department, Sir John Cass College, Jewry Street, London, E.C.3)

Summary ¹⁰³Rh chemical-shift differences of up to 83 p.p.m. can arise as a result of different ligand configurations in *cis*- and *trans*-[Rh(MeSCH₂·CH₂SMe)₂Cl₂]+Cl⁻.

THE effects of molecular configuration upon ¹H and ¹⁹F chemical shifts have been studied extensively,¹ but little is known of the behaviour of heavier nuclei. I now report the measurement by heteronuclear double resonance of some ¹⁰³Rh (abundance = 100%, $I = \frac{1}{2}$) chemical shifts in octahedral complexes in which variations an order of magnitude larger are found. The technique shows promise as a sensitive probe for the study of homogeneous systems in which rhodium complexes function as stereospecific catalysts.

The 60 MHz. ¹H n.m.r. spectrum of the methyl groups of a solution in deuterium oxide of *trans*-[Rh(MeSCH₂·CH₂-SMe)₂Cl₂]⁺Cl⁻ was reported by Walton² and is a series of doublets [splitting ³J(¹⁰³Rh · · · H) 1.05 Hz] which arise from species having different ligand configurations. Simultaneous irradiation of the sample at the ¹⁰³Rh resonant frequency collapses the doublet splitting (Figure), thus confirming the original interpretation,² and the precise frequency needed gives the rhodium chemical shift (Table).

¹⁰³Rh and ¹H Chemical shifts in D₂O solution of [Rh(MeSCH₂·CH₂SMe)₂Cl₂]+Cl- at 22°

¹⁰³ Rh Chemical shift ^a (p.p.m.)	$\tau (CH_3)$ (p.p.m.)	Assignment
(p.p.m.)	(p.p.m.)	Assignment
0	7.48	trans
+ 22	7.65	trans
+ 38	7.40;7.56;7.60	trans ^b
+ 83	7.50	trans
+214	$7.35; 7.51_{5}$	cis
+254	7.35; 7.42; 7.65	cis
+296	7.31; 7.60	cis

^a That at lowest field is arbitrarily taken as zero.

^b See text and displayed formula.

There are only five possible isomers of the *trans*-complex so the observation of at least seven distinct ¹⁰⁸Rh frequencies indicates that some *cis*-isomers (ten possibilities) were also present in the solution examined. This is consistent with the changed appearance of the proton spectrum after the sample had been maintained at 100° for some time: some of the weaker lines became stronger, indicating slow equilibrium between the *cis*- and *trans*-isomers. The assignments are based primarily on the assumption that the *trans*-isomer is the predominant species in solution as it is in the solid; the chemical-shift trends are then similar to those found in platinum complexes.³ In particular, the isomer with rhodium chemical shift + 38 p.p.m. is assigned the configuration shown, because this is the only *trans*species containing several kinds of methyl group, two of which have identical τ -values (7.56).

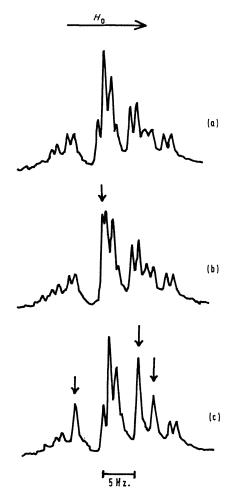


FIGURE. Frequency-sweep 60 MHz. proton spectrum of the methyl groups of $[Rh(MeSCH_2 \cdot CH_2SMe)_2Cl_2]^+Cl^-$ in D_2O at 22°.

(a) Normal spectrum.

- (b) ¹⁰³Rh irradiated at 0 p.p.m.
- (c) ¹⁰³Rh irradiated at +38 p.p.m.

Vertical arrows indicate lines that have been collapsed by $^{108}\mathrm{Rh}$ irradiation.

The proton spectrum broadens on heating and gives *two* doublets ($\tau = 7.35$ and 7.50; relative intensities *ca.* 1: 3.5) at 108°. The species have rhodium chemical shifts of +163 and -49 p.p.m., and must be the *cis*- and *trans*-isomers undergoing rapid configurational rearrangement. Since the complex is a chelate the retention of 103 Rh · · · H coupling does not indicate whether the mechanism involves inversion at sulphur or cleavage of an Rh–S bond.⁴ Half of the proton resonance from the *cis*-isomer is apparently concealed by the doublet at τ 7.50, and probably arises from

methyl groups attached to sulphur atoms that are trans to other sulphur atoms. The weighted mean rhodium chemical shift of the trans-isomer at 22° is ca. + 40 p.p.m., so there is a temperature-dependence of ca. -1.0 p.p.m./degree. Similar variations occur for 59Co chemical shifts,5 and arise effectively from changes in the ΔE term of the paramagnetic contribution.

Whilst the spread of proton chemical shifts for the methyl groups can be accounted for by the diamagnetic anisotropy of the sulphur lone-pairs, the range of the rhodium shifts is too great for this. There will be different degrees of steric

¹ W. A. Thomas, Ann. Rev. N.M.R. Spectroscopy, 1968, 1, 43. ² R. A. Walton, J. Chem. Soc. (A), 1967, 1852. ³ W. McFarlane, Chem. Comm., 1968, 393; A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1968, 1970. ⁴ E. W. Abel, R. P. Bush, F. J. Hopton, and C. R. Jenkins, Chem. Comm., 1966, 58; P. Haake and P. C. Turley, J. Amer. Chem. Soc.,

1967, 89, 4611. ⁵ W. G. Proctor and F. C. Yu, Phys. Rev., 1951, 81, 20; R. Freeman, G. R. Murray, and R. E. Richards, Proc. Roy. Soc., 1959, A, **242**, 455.

strain in the various isomers, and this will lead to small variations of bond lengths which will in turn affect ΔE and $\langle r_{44}^{-3} \rangle$, and so may account for the observed chemical-shift differences. Alternatively, the electrons of the Rh-Cl bonds may be polarised by the sulphur lone-pairs to different extents in the various isomers.

I thank the S.R.C. for a grant for the purchase of the JEOL spectrometer, and Johnson Matthey and Co., Ltd. for the loan of rhodium trichloride.

(Received, May 8th, 1969; Com. 639.)