Rotational Barriers about Phosphorus-Nitrogen Bonds

By H. GOLDWHITE* and D. G. ROWSELL

(California State College, Los Angeles, California 90032)

Summary Studies of the low-temperature n.m.r. spectra of compounds R¹PCl·NR²₂, and of analogous fluorinated and P(O) compounds, suggest a $p_{\pi}-d_{\pi}$ contribution to the PN rotational barrier.

A NUMBER of reports have appeared recently¹⁻³ of a conformational process observed at low temperatures in the n.m.r. spectra of compounds of the type R¹PCl·NR²₂ which is best explained as originating in a barrier to rotation about the P-N bond.³ The cause of the rotational barrier is not clear; some possibilities include nitrogen lone-pair-phosphorus lone-pair interactions;3 multiple bonding due to nitrogen-phosphorus $p_{\pi}-d_{\pi}$ overlap;² and dipole-dipole interaction. We have made some observations on this phenomenon which extend the range of compounds studied, and suggest that $p_{\pi}-d_{\pi}$ interaction may be, in part, responsible for the rotational barrier.

We have made low-temperature n.m.r. observations on the compounds RPCl·NMe₂ where $R = ClCH_2$, $CHCl_2CF_2$, and Prⁱ. In each of these the R group contains a set of magnetically non-equivalent nuclei which serve to exclude inversion at phosphorus (either thermal, or by chemical exchange⁴) as an explanation for the observed effects. For each of these compounds the doublet (due to HCNP coupling) observed in solution for the NMe₂ group broadened as the temperature was lowered, and eventually gave two doublets; the observed coalescence temperatures for these compounds were between -50° and -60° , close to that observed previously¹⁻³ for PhPCl·NMe₂.

A striking difference is observed for ClCH₂PF·NMe₂ where there is little broadening of the NMe₂ group doublet even at -100° , and the same lack of broadening is apparent in the spectra of ClCH₂P(O)Cl·NMe₂ and Me₂CHP(O)ClNMe₂. Earlier observations on the compounds Me₂CHPPh·NMe₂ and MeC: C.PPh.NMe, have shown¹ that for these compounds also, the coalescence temperature is low (below -80°).

These observations do not agree with an exclusive lonepair-lone-pair repulsive origin for the rotational barrier. Compounds with groups of widely differing electronegativities attached to phosphorus would be expected to affect the lone-pair electron distribution at phosphorus to differing degrees, and so change a rotational barrier originating in lone-pair interactions. However in CHCl₂·CF₂·PCl·NMe₂ and Me₂CH·PCl·NMe₂ the observed coalescence phenomena occur at similar temperatures, and presumably the rotational barriers are not very different in these compounds. It is also noteworthy that in compounds with a minimal number of electron withdrawing substituents on phosphorus, such as Me₂CH·PPh·NMe₂, where one would expect the phosphorus lone-pair electron density to be relatively high, the P-N rotational barrier is apparently very low.¹

A barrier originating in $p_{\pi}-d_{\pi}$ nitrogen-phosphorus multiple bonding has been suggested previously² to account for the observed effects, but has also been discounted³ on the basis that π -bonding of this type would not be expected to lead to a barrier to rotation.⁵ This conclusion may not be justified when there is more than one group capable of p_{π} - d_{π} bonding attached to a central atom with vacant dorbitals. For example, molecular orbital calculations on the compound $F_2N \cdot SO_2 \cdot NF_2$ indicated a substantial rotational barrier about the S-N bond.⁶ The C_{2v} conformation of this molecule was found to be more stable than the C_s conformation because, in the latter, the nitrogen lone-pairs have to compete more with the lone-pairs of the oxygen atoms for *d*-orbital stabilization than in the former.

It may be, then, that the observed P-N rotational barrier is due in part to $p_{\pi}-d_{\pi}$ multiple bonding between nitrogen and phosphorus, the extent of which is sensitive to the other substituents on phosphorus. If these substituents are not electronegative, the phosphorus d-orbitals may be too diffuse to overlap efficiently with the nitrogen lone-pair orbitals, and the rotational barrier will be low (as in Me₂CH·PPh·NMe₂). If there are other electronegative substituents on phosphorus which themselves form strong multiple p_{π} -d bonds to phosphorus (e.g. O or F) then their competition may lead to a low multiple bond order for the PN bond and to a low rotational barrier [as in ClCH₂·PF· NMe_2 and $ClCH_2 \cdot P(O)Cl \cdot NMe_2$]. In the intermediate case of a Cl substituent which is electronegative, but does not itself form a strong p_{π} - d_{π} bond to phosphorus the PN rotational barrier may become large enough to be observed by n.m.r. methods.

This work was supported by the National Cancer Institute.

(Received, April 28th, 1969; Com. 586.)

- ¹ M. P. Simonnin, J. J. Basselier, and C. Charrier, Bull. Soc. chim. France, 1967, 3544.
 ² D. Imbery and H. Friebolin, Z. Naturforsch., 1968, 23b, 759.
 ³ A. H. Cowley, M. J. S. Dewar, and W. R. Jackson, J. Amer. Chem. Soc., 1968, 90, 4185.
 ⁴ H. Goldwhite and D. G. Rowsell, J. Mol. Spectroscopy, 1968, 27, 364.
 ⁵ M. J. S. Dewar, E. A. Lucken, and M. A. Whitehead, J. Chem. Soc., 1960, 2423.
 ⁶ T. Jordan, H. W. Smith, L. L. Lohr, and W. N. Lipscomb, J. Amer. Chem. Soc., 1963, 85, 846.