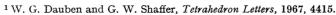
Photolysis of (+)-cis-Caran-5-one

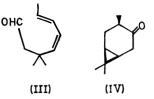
By (MISS) M. S. CARSON, W. COCKER,* S. M. EVANS, and P. V. R. SHANNON (University Chemical Laboratory, Trinity College, Dublin 2)

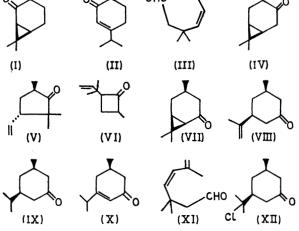
IRRADIATION of caran-2-one (I) affords principally p-menth-3-en-2-one (II) and 3,3-dimethylocta-4,6-dienal (III).¹ The nonconjugated (—)-*cis*-caran-4-one (IV) likewise yields mainly (+)-*trans*-1,1,3-trimethyl-5-vinylcyclopentan-2-one (V)^{2,3} and a mixture of *cis*- and *trans*-2-methyl-2-(3-methyl-2-oxocyclobutyl)but-3-ene (VI).² We have shown that irradiation of (+)-*cis*-caran-5-one (VII)⁴ in ether affords principally (—)-*cis*-*m*-menth-8-en-5-one (VIII), (—)-*cis*-*m*menthan-5-one (IX), (—)-*m*-menth-3-en-5-one (X), and other minor products, two of which are probably the epimeric *cis*-*m*-menthan-5-ols. 3,3,6-Trimethylhepta-4,6dienal (XI) has not yet been encountered (*cf.* ref. 1).

The photolysis products separated by elution from


silicic acid, followed by preparative g.l.c. on Carbowax columns had the following characteristics. Ketone (VIII), $[\alpha]_D^{30} - 2 \cdot 1^\circ$ (c 0.8 in CHCl₃), ν_{max} (liquid) 3067 (=CH₂), 1712 (C=O), 1645 (C=C), and 890 (C=CH₂) cm.⁻¹, displayed signals at τ 5.2 (s, =CH₂), 7.76 (m, CH₂·CO·CH₂), 8.25 (s, CH₃·C=), and 8.95 (d, J 6 Hz., CH₃·C). On hydrogenation it afforded the second photo-product (IX), $[\alpha]_D^{30} - 2 \cdot 01^\circ$ (c 0.55 in CHCl₃), ν_{max} (liquid) 1712 cm.⁻¹, τ 7.6—8.8 (9H), 8.98 (d, J 6 Hz, CH₃·C), and 9.09 [d, J 6 Hz., (CH₃)₂C].

The third photo-product (X), $[\alpha]_D^{20} - 70^\circ$ (c 0.7 in CHCl₃), λ_{\max} (EtOH) 234 (log ϵ 4.05) and 310 nm. (log ϵ 1.6), ν_{\max} (liquid) 1664 (C=C·C=O) and 1621 (C=C) cm.⁻¹,


displayed signals at τ 4.28 (s, =CH), 7.3-8.4(6H), and 8.87 (d, J 6 Hz, 9H). Hydrogenation of (X) over palladised charcoal afforded (g.l.c.) the saturated ketone (IX).


Support for our structural assignments ensued as follows. (1) Reduction of a mixture of (VIII) and (IX) with lithium aluminium hydride, conversion of the derived alcohols to their tosylates and hydrogenolysis of these with lithium aluminium hydride afforded a product which on hydrogenation over palladised charcoal gave m-menthane. (2) Treatment of (+)-cis-caran-5-one (VII) with boron trifluoride in ether gave the photo-product (VIII) in small yield, and the unsaturated ketone (X) in over 90% yield. Similar treatment of the photo-product (VIII) gave (X). (3) With hydrochloric acid, according to concentration, (+)-cis-caran-5-one (VII) gave either the unsaturated ketone (X) or (+)-cis-8-chloro-m-menthan-5-one (XII), m.p. 50-51° $[\alpha]_{D}^{20} + 17^{\circ}$ (c, 0.48 inCHCl₃) λ_{max} (EtOH) 285 nm. (log ϵ 1.25), ν_{max} (Nujol) 1715 (C=O), and 817 (Cl) cm.⁻¹, displayed signals (CCl₄) at τ 7.5–8.7(8H), 8.40 and 8.46 [s, (CH₃)₂C], and 8.9 (d, J 5 Hz., CH₃.C). Treatment of the chloro-ketone (XII) with 6% methanolic KOH gave a quantitative yield of (+)-cis-caran-5-one (VII).

The ionic reaction of acid with caran-5-one is formally

- ⁴ W. Cocker, D. P. Hanna, and P. V. R. Shannon, J. Chem. Soc. (C), 1968, 489.

similar to the photochemical, but probably free-radical, reaction (cf. ref. 5).

(Received, May 13th, 1969; Com. 676.)