The Determination of the Sign of ${}^{2}J_{PP}$ in cis- and trans-[(OC)₄Mo{P(OMe)₃]₂]

By R. D. BERTRAND, F. OGILVIE, and J. G. VERKADE*

(Department of Chemistry, Iowa State University, Ames, Iowa, 50010)

Summary The signs of ${}^{2}J_{PP}$ in cis- and trans-[(OC)₄Mo-{P(OMe)₃}₂] were found from double resonance experiments on the ¹³C satellites in the ¹H spectra to be negative and positive, respectively.

THE discovery by Jenkins and Shaw¹ that ³¹P-³¹P coupling in complexes of second- and third-row transition metals containing identical phosphines is apparently larger in magnitude when the phosphorus ligands are trans than when they are cis, has been used as a method for confirming the stereochemistry of a wide variety of co-ordination compounds.² If the various values of ${}^{2}J_{PP}$ for different phosphorus ligands³ are to have any promise of revealing the mechanism by which coupling is transferred between

Because of the small value of ${}^{2}J_{PC} + {}^{4}J_{PC}$ (N_C) in both the cis- and trans-compounds, we were unable to distinguish between the centres of the frequency ranges used to tickle the outer lines of the two AB quartets of the ³¹P spectrum corresponding to the two spin states of ¹³C. Thus it was not possible to relate the sign of ${}^{3}J_{\rm PH} + {}^{5}J_{\rm PH}$ (N) to that of ${}^{1}J_{CH}$ (+). By irradiating selected transitions in one of the ³¹P AB quartets corresponding to one of the ¹³C spin states, the sign of ${}^{2}J_{PP}$ could be related to that of $N.^{4}$ Inasmuch as N is expected to be nearly equal to ${}^{3}J_{\rm PH}^{\dagger}$ and since this parameter is positive and of the same magnitude for $[(OC)_5MoP(OMe)_3]$, $P(OMe)_3$, and $O=P(OMe)_3$, we conclude that ${}^{2}J_{PP} < O$ in the *cis*-compound and > O in the trans.

N.m.r. parameters (Hz.) relevant to the sign of ${}^{2}J_{\rm PP}$ in cis- and trans-[(OC)₄Mo{P(OMe)₃}]

				$N_{\mathbf{C}} \text{ or } {}^{2}\!J_{\mathbf{PC}}{}^{\mathbf{a}}$	N or ${}^{s}J_{PH}{}^{b}$	$^{2}J_{PP}$	$^{1}J_{CH}$
P(OMe),	••		••	$+10.0\pm0.2$	$+10.0\pm0.1$		$+146.0\pm0.2$
[(OC), MoP(OMe)]	••		••	-2.3 ± 0.4	$+11.6\pm0.1$		$+146.8 \pm 0.2$ d,
							$+146 \cdot 2 \pm 0 \cdot 4^{e}$
$cis-[(OC)_{a}Mo\{P(OMe)\}$		••	-3.1 ± 0.4^{f}	$+11.6\pm0.1t$	-40.5 ± 0.1 g	$+144.9\pm0.4^{\circ}$	
trans-[(OC) Mo {P(OM	$e)_{3}_{2}$	••	••	-1.7 ± 0.4^{f}	$+11.6\pm0.1$ f	$+162\pm5^{h}$	$+145.4\pm0.4^{\circ}$
$O = P(OMe)_{3}^{c}$			••	-5.8 ± 0.2	$+10.5\pm0.1$		$+147.0\pm0.2$

 ${}^{\mathbf{b}}N_{\mathbf{C}} = {}^{2}J_{\mathbf{PC}} + {}^{4}J_{\mathbf{PC}}$ for the disubstituted complexes (see ref. 4); ${}^{2}J_{\mathbf{PC}}$ refers to the remaining compounds. $N_{\mathbf{C}}$ and ${}^{2}J_{\mathbf{PC}}$ are obtained from the ${}^{13}\mathbf{C}$ INDOR spectra. ${}^{\mathbf{b}}N = {}^{3}J_{\mathbf{PH}} + {}^{5}J_{\mathbf{PH}}$ for the disubstituted complexes (see ref. 4); ${}^{3}J_{\mathbf{PH}}$ refers to the remaining compounds, N and ${}^{3}J_{\mathbf{PH}}$ are obtained directly from the 14 spectra. ${}^{\mathbf{c}}$ Values for this compound were taken from W. McFarlane, *Proc. Roy. Soc.*, 1968, A, **306**, 185. 4 From 14 spectrum. 6 From ${}^{13}\mathbf{C}$ INDOR spectrum. Sign assumed to be the same as in the nearly analogous $[(OC)_{5}MOP(OMe)_{3}]$. 8 Magnitude obtained directly from the separation of the first "inner" peak and the low-intensity absorption outside the main doublet in the 1 H spectrum (see ref. 4). h The separation corresponding to ${}^{2}J_{\mathbf{PP}}$ in one of the AB quartets of the ${}^{13}\mathbf{C}$ satellites in the ${}^{31}\mathbf{P}$ spectrum was obtained by irradiation in the ${}^{31}\mathbf{P}$ region while scanning one of the ${}^{13}\mathbf{C}$ satellites in the ${}^{14}\mathbf{H}$ spectrum (see ref. 4).

the phosphorus nuclei as well as providing additional information on the nature of the phosphorus-metal bond, it is necessary to obtain the sign of ${}^{2}J_{PP}$ for each configuration of the phosphorus nuclei with respect to the metal.

We now report the first example of such a sign determination. By employing double resonance experiments involving the ¹³C satellites in the ¹H spectra⁴ of [(OC)₅MoP(OMe)₃] and of cis- and trans-[(OC)₄Mo {P(OMe)₃}₂][†] it was concluded that ${}^{2}J_{PP}$ in the *cis*- and *trans*-complexes is negative and positive, respectively. The pertinent data set out in the Table were obtained on a Varian HR-60 instrument equipped with a field-frequency lock, frequency synthesizer and synthesizer driver, frequency counter and a digital analogue sweep unit for locating the ³¹P and ¹³C perturbing frequencies.

Although the reason for the sign inversion from the cisto the trans-isomer is not obvious, it should be noted that a common p_{σ} metal orbital is shared between the transphosphorus nuclei which provides another route for coupling, whereas this is not the case in the cis-complex. Further experiments are under way to ascertain the sign of ${}^{2}J_{\rm PP}$ for a variety of complexes containing phosphorus ligands whose substituents vary in electronegativity. In view of the recent observation by Finer and Harris that ${}^{1}J_{PP}$ undergoes a sign inversion in a series of diphosphorus compounds,⁵ the possibility of a sign change in ${}^{2}/PP$ in a given geometry (cis or trans) upon varying the phosphorus ligands in the metal complexes under study cannot be ruled out.

(Received, May 5th, 1969; Com. 629.)

and J. G. Verkade, to be published).

¹ J. M. Jenkins and B. L. Shaw, *Proc. Chem. Soc.*, 1963, 279. ² See for example M. S. Lupin and B. L. Shaw, *J. Chem. Soc.* (A), 1968, 741; J. Powell and B. L. Shaw, *ibid.*, p. 211; and P. R. ¹ See for example M. S. Lipin and B. L. Shaw, *J. Chem. Sol.*² Brooks and B. L. Shaw, *ibid.*, 1967, 1079.
³ F. Ogilvie, J. M. Jenkins, and J. G. Verkade, to be published.
⁴ E. G. Finer and R. K. Harris, *Mol. Phys.*, 1967, 13, 65.
⁵ E. G. Finer and R. K. Harris, *Chem. Comm.*, 1968, 110.