Intramolecular Catalysis in the Aminolysis of 2-Pyridyl Esters

By FRED R. SMITH and JOSEPH W. WATSON*

(Department of Chemistry, University of California, San Diego, La Jolla, California 92037)

Summary The second- and third-order butylaminolysis of 2-pyridyl p-nitrobenzoate in chlorobenzene are intramolecularly catalysed.

In view of the general interest in intramolecular catalysis and the recent report of the use of 2-pyridylthiol esters in

peptide synthesis,¹ we report on investigations of intramolecular catalysis in the reactions of 2-pyridyl compounds in order to correct the general assumption that intramolecular catalysis affects only the second-order term, first order in ester and amine.

The data in the Table provide strong evidence for

NO.·C.H.·CO.X-⊅	Butvl	Amine	А	НР		
$\begin{array}{c} X\\ C_6H_4 \cdot NO_2 - p\\ 4 - Pyridyl\\ 2 - Pyridyl\end{array}$	$ \begin{array}{c} 10^2k_2 \\ 0.0 \\ 0.0 \\ 2.5 \end{array} $	${10^2k_3\over 7\cdot 3} \\ 4\cdot 0 \\ 24\cdot 0$	$\begin{array}{c}k_2\\77{\cdot}0\\21{\cdot}0\\7{\cdot}4\end{array}$	$egin{array}{c} k_3 \ 1\cdot7 imes10^5 \ 3\cdot8 imes10^4 \ 6\cdot3 imes10^3 \end{array}$	vC=O ^b 1755·9 1754·4 1752·7	$pK_{a}^{c}(HX)$ 7.2 7.67 $\int 8.66$
C_6H_4 ·Cl-m C_6H_4 ·NO ₂ -m	0·0 0·0	$\begin{array}{c} 0 \cdot 2 \\ 1 \cdot 2 \end{array}$	$0.0 \\ 1.1$	$egin{array}{ll} 1{\cdot}4 imes 10^3 \ 3{\cdot}8 imes 10^4 \end{array}$	$1751.7 \\ 1755.0$	

TABLE

Rate and physical constants for anyl and pyridyl compounds, $k_{1 \text{ obs}} = k_2[A] + k_3[A]^2$

^a Spectrophotometrically determined rates in chlorobenzene at 25°; k_2 and k_3 in units of sec.⁻¹M⁻¹ and sec.⁻¹M⁻², respectively. ^b Carbonyl stretching frequencies of *p*-nitrobenzoates in carbon tetrachloride. ^c For 2- and 4-pyridyl compounds pK_a 's of hydroxyl tautomers are given.⁵

intramolecular catalysis of the butylaminolysis of 2-pyridyl p-nitrobenzoate in chlorobenzene.

The occurrence of a dectable second-order term, k_2 , only in the aminolysis of the 2-pyridyl ester indicates that its mechanism of aminolysis is different from that of the arvl and 4-pyridyl esters. A comparison of the third-order terms, k_3 's, for the aminolysis of the 2-pyridyl and aryl esters of phenols with pK_a 's similar to that of 2-hydroxypyridine indicates that the k_3 term for the 2-pyridyl ester is enhanced by a factor of between 20 and 100.

The relative susceptibilities of the esters to nucleophilic substitution in the absence of intramolecular catalysis are indicated by their carbonyl stretching frequencies² and their rate constants for reaction with 1,4,5,6-tetrahydropyrimidine (THP). Nucleophilic attack by the imine nitrogen of THP makes the direct proton transfer to the 2-pyridyl nitrogen required for intramolecular catalysis sterically

- ¹ K. Lloyd and G. T. Young, Chem. Comm., 1968, 1400.
- ² H. A. Staab, Annalen, 1959, 622, 31.
- ³ W. Kampe, *Tetrahedron Letters*, 1963, 2133. ⁴ Y. Ueno, T. Takaya, and E. Imoto, *Bull. Chem. Soc. Japan*, 1964, 37, 864.
- ⁵ A. Albert and V. N. Phillips, J. Chem. Soc., 1956, 1294; S. F. Mason, ibid., 1958, 674.

impossible. This data supports intramolecular catalysis rather than thermodynamic instability³ as the cause of the k_2 and large k_3 terms in the aminolysis of the 2-pyridyl ester.

Our results further indicate that the high reactivity of 2-pyridyl esters toward amines^{1,3,4} may not be totally the result of a large second-order term, as might be assumed in the absence of detailed kinetic data, for at moderate to high concentrations of general base catalysts intramolecular catalysis of the third-order term may be the major cause of the high reactivity. Because basic solvents such as NN-dimethylformamide may act as general base catalysts, the observation of second-order kinetics is often not sufficient to establish the order of the intramolecularly catalysed term.

This work was supported by a National Institutes of Health research grant.

(Received, May 16th, 1969; Com. 689.