Reaction of 1,1-Dicyclopropylethylene with Pentacarbonyliron: a Novel Carbon Monoxide Insertion Coupled with a Double Cyclopropane Ring-opening

By RAPHAEL BEN-SHOSHAN and SHALOM SAREL*

(Department of Pharmaceutical Chemistry, The Hebrew University, Jerusalem, Israel)

Summary 1,1-Dicyclopropylethylene reacts with pentacarbonyliron to give 2-cyclopropylpenta-1,3-dienetricarbonyliron (V) and, after a longer reaction time, a mixture of (V) and 3-(1'-propenyl)-cyclohex-2-enonetricarbonyliron-a carbon monoxide insertion reaction.

EARLIER work¹ has shown that 1-aryl-1-cyclopropylethylene (I) reacts with pentacarbonyliron (II) to yield stable diene complexes of structure (III). More recently, the rearrangements of vinylcyclopropane systems to π -allyl complexes on reaction with palladium (II) salts,^{2,3} and to a fulvene-type hexacarbonyldi-iron π -complex on reaction with Fe₂(CO)₉,⁴ have been reported.

We report the reactions of 1,1-dicyclopropylethylene⁵ (IV) with (II). This study was aimed at establishing whether the reaction of (IV) with (II) generates the 2-cyclopropylpenta-1,3-diene π -complex (V) in parallel to (I) \longrightarrow (III) conversion, or possibly lends itself to a double cyclopropare ring-opening to provide a di-iron π -complex.

When a mixture of equimolar quantities of (IV) and (II) in ethylcyclohexane was heated at 140° for 6 hr. and then

chromatographed on Florisil, a yellow oil, an iron π -complex of structure (V), was obtained.

The assignment of 2-cyclopropylpenta-1,3-dienetricarbonyliron structure (V) for the product is inferred from: (i) its elemental analysis; (ii) the absorption bands at 1975, 1985, and 2052 cm.⁻¹ in the i.r. spectrum (cyclohexane); (iii) the mass spectrum of (V) exhibiting the parent molecular ion at m/e 248 and peaks at 220, 192, and 164 corresponding to the successive loss of three CO ligands, and (iv) the 100 MHz. n.m.r. spectrum in CDCl₃ (lock signal benzene)[†] showing high-field resonances ranging from τ 9.20— 9.58 (4H, m, 6-H) attributable to cyclopropane protons, a quintet centred at τ 8.57 (1H, 7-H), a doublet at τ 8.75 (3H, 4-H; J 6Hz.) attributable to methyl group protons, and four additional signals assigned to four diene protons: τ 8·4 (1H, m, 1-H), 9·08 (1H, d, 2-H), 8·08 (1H, double d, 3-H), 5.18 (1H, d, 5-H; J 8Hz.). The chemical shifts of the cyclopropane protons in the substrate (IV) and in the iron π -complex (V) are very similar, suggesting little, if any, interaction between the metal and the small ring.

When (IV) was similarly exposed to the action of (II) for

 \dagger N.10.r. spectra were measured on a Varian HA-100 spectrometer. Chemical shifts are reported in τ units relative to internal Me₄Si.

a much longer period (16 hr.) and then processed as described above, two metal carbonyl π -complexes: a yellow oil (A) and a yellow crystalline product melting at $76-78^{\circ}$ (B), in 1:1 ratio, were obtained. Compound A is identical in all respects with (V). Product B is assigned the 3-(1'-propenyl)-cyclohex-2-enonetricarbonyl iron formulation (VI)

on the basis of: (i) its elemental analysis; (ii) its i.r. spectrum in cyclohexane, displaying intense peaks at 1980, 2000, and 2060 (Fe-CO) cm.-1, and an additional band at 1685 cm.-1 corresponding to a conjugated ketone absorption;6 (iii) its 100 MHz. n.m.r. spectrum in CDCl₃ (lock signal benzene), indicating the disappearance of cyclopropane resonances and consequently the appearance of new signals assigned to structure (VI) as follows: τ 8.75 (3H, d, 4-H; J 5Hz.), 8.88 (1H, double quartet, collapsing to q on irradiation at τ 5·10), 8·48 (1H, s, 2-H), 5·10 (1H, d, 3-H; J 8Hz., collapsing to s on irradiation at τ 8.88), 7.25–7.93 (4H, m, 5-H + 7-H), 8.0-8.35 (2H, m, 6-H). A trans-relation between 1-H and 3-H is inferred from the coupling constant J_{13} .

The mass spectrum of (VI) exhibits the parent molecular ion at m/e 276 and peaks at m/e 248, 220, and 192, corresponding to the successive loss of three CO ligands, after which the cracking pattern arising from fragmentation of the cyclohexenoneiron becomes complex.

The data presented here provide a new type of carbon monoxide insertion reaction coupled with a double cyclopropane ring-opening on reaction with pentacarbonyliron. Formation of the diene complex (V) provides the first known example of a metal carbonyl π -complex bearing a cyclopropane ring which is not a part of a bicyclic system.

We thank Badische Anilin und Soda Fabrik, A.G., Germany, for a gift of pentacarbonyliron.

(Received, June 11th, 1969; Com. 837.)

[‡] The trans-1,3 coupling constant for compounds of structure (III) has been found to be 9 Hz. (ref. 1).

¹ S. Sarel, R. Ben-Shoshan, and B. Kirson, J. Amer. Chem. Soc., 1965, 87, 2517.

² A. D. Ketley and J. A. Braatz, J. Organometallic Chem., 1967, 9, P5.

³ T. Shono, T. Yoshimura, Y. Matsumara, and R. Oda, J. Org. Chem., 1968, 33, 876.

⁴ C. H. DePuy, V. M. Kobal, and D. H. Gibson, J. Organometallic Chem., 1968, 13, 266.
⁵ J. Yovell, Dissertation, the Hebrew University, Jerusalem, 1967; I. A. D'yakonov and I. M. Stroiman, Zhur. obshchei Khim., 1963, 33, 4019 (Chem. Abs., 1964, 60, 9159 g).
⁶ R. W. Howsam and F. J. McQuillin, Tetrahedron Letters, 1968, 3667.