Lower Valent Dialkylamides of Titanium and Vanadium By E. C. Alyea, D. C. Bradley, M. F. Lappert,* and A. R. Sanger [Department of Chemistry, Queen Mary College, London, E1 (E.C.A. and D.C.B.) and School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ (M.F.L. and A.R.S.)] Summary Novel dialkylamides of Ti^{III} which have alkylamido-bridged structures and exhibit fluxional behaviour and strong metal–metal interactions, together with the Ti^{II} derivatives obtained by disproportionation $2TiX(NR_2)_2 \longrightarrow TiX_2 + Ti(NR_2)_4$, afford valuable starting materials for the synthesis of bivalent and tervalent titanium complexes. METAL DIALKYLAMIDES LMR₂ (where L represents the sum of all ligands other than one NR₂ group attached to the metal M) are interesting *inter alia* because (i) they are versatile intermediates in inorganic and organic syntheses,¹ (ii) the ligand(s) NR₂ may stabilise unusual co-ordination numbers (e.g. 3-co-ordinate Fe^{III} and Cr^{III}),^{2,3} and (iii) their attempted preparation from $MCl_n/nLiNR_2$ may afford unusual⁴ or rearranged⁵ products. We now report on the novel Ti^{III} and, more briefly, the Ti^{II} , V^{IV} , and V^{III} dialkylamides. Some data on Ti^{III} amides (all analysed satisfactorily) are summarised in the Table. They may be used as reagents for obtaining other d^1 -complexes; for example, $(\pi - C_5H_5)_2TiNMe_2$ reacts with several metal hydrides to give $(\pi - C_5H_5)_2Ti$ -metal complexes. The reaction $LMCl_n/nLiNR_2$ gave $Ti(NR_2)_3$ (R = Me or Et, but not Pr^i or Bu^s) and $(\pi - C_5H_5)_2TiNMe_2$. Only one NMe₂ group was displaced from Ti(NMe₂)₃ by reaction with the protic compound HA, to yield $ATi(NMe_2)_2$ [A = π -C₅H₅, NEt₂, NPr₂, or N(SiMe₃)₂]; the significance of steric effects is further demonstrated by the failure of PriNH to react with Ti(NEt₂)₃. Alcohols (MeOH or EtOH) readily displaced all NMe_2 groups from $Ti(NMe_2)_3$ (acacH \rightarrow Ti acac₃), π -C₅H₅Ti(NMe₂)₂, $(\pi$ -C₅H₅)₂TiNMe₂ (the C₅H₅ groups are also suceptible to displacement by ROH), or V(NMe2)4 to give the corresponding alkoxides. Carbon disulphide and Ti(NEt₂)₃, failed to yield the corresponding trisdithiocarbamate and gave instead Ti(S₂CNEt₂)₄ and Ti(S₂CNEt₂)₂. Disproportionation was also observed upon attempted distillation of $XTi(NMe_2)_2$; volatile $Ti(NMe_2)_4$ and the black-green pyrophoric Ti^{Π} compounds $(\mathrm{TiX}_2)_n$ (X = NMe₂, NEt₂, NPr¹₂, or Cl) were obtained. Similarly, distillation of the products obtained by treating VCl₃ with $LiNR_2$ (3 mol., R = Me or Et) afforded the volatile⁸ $V(NR_2)_4$. In view of the current interest in Ti^{II} complexes,⁹ the synthetic possibilities of (i) the volatility-controlled disproportionation $2TiL(NR_2)_2 \rightarrow TiL_2 + Ti(NR_2)_4$; and (ii) the $Ti(NR_2)_2$ compounds containing reactive titanium-nitrogen bonds are significant and are being explored. It is interesting that complete replacement of all the | Table | | | | |--|--|---|---| | $Compound^a$ | E.s.r. (g values) b | $^1\mathrm{H.n.m.r.}$ $(au)^{\dagger}$ | Probable structure | | $[(\mathrm{Me_2N})_3\mathrm{Ti}]_2$ | $g_{1,2,3} = 1.98_9^{\circ}$ | 6·79s | (Me ₂ N) Ti N Ti (NMe ₂) ₂ N Me_2 C $3v$ | | $(\mathrm{Me_2N})_3$, Ti , OEt_2 | $g_{1,2} = 1.98_3^{\ d}$ $g_3 = 1.91_4$ | 6.78₺ | $C_5H_5(\mathrm{Me_2N})\mathrm{Ti} \underbrace{\stackrel{\mathrm{Me_2}}{N}}_{\mathrm{Ne_2}}\mathrm{Ti}\;(\mathrm{NMe_2})\;C_5H_5$ | | $[\pi\text{-}\mathrm{C_5H_5Ti}(\mathrm{NMe_2})_2]_2$ | | 6.84, 3.97 | | | $[(\pi\text{-}C_{\deltaH}_{5})_{2}\mathrm{TiNMe}_{2}]_{2}$ | $g_1 = 1.99_9^e$
$g_2 = 1.98_3$
$g_3 = 1.95_9$ | 6·79, 4 ·17 | $(C_{\delta}H_{\delta})_{2}$ Ti N Me_{2} N $Mi(C_{\delta}H_{\delta})_{2}$ | - ^a Molecular weights were determined cryoscopically in C₆H₆; the compounds, except the brown powder [(C₅H₅)TiNMe₂]₂, are red-brown viscous liquids at ambient temperatures. - b Approx. 10-2m-solutions; we thank Dr. A. Hudson and Mr. M. J. Kennedy for these data; the compounds are virtually diamagnetic. - ^e Benzene solution, room temperature and -196° . - d Ether solution, -196°. - e Benzene solution, -196°. - ** f 60 MHz., 37°; all peaks are singlets; benzene or C_6D_6 solution. 8 At -80° in pentane peaks due to terminal and bridging NMe₂ are resolved, 2·2 Hz. apart. h Also broad multiplets (OEt₂) centred at τ 6·7 and τ 8·2. chloride ligands of MCl₃ by NPrⁱ₂ (from LiNPrⁱ₂) was not achieved for M = Ti or V, in contrast to M = Cr; this may be related to the relative gain $(d^3 \gg d^1 \text{ or } d^2)$ in C.F.S.E. in forming trigonal $M(NPr_2^i)_3$ from tetrahedral $[ClM(NPr_2^i)_2]_2$. We thank the S.R.C. and the European Office of the U.S. Army for support. (Received, June 16th, 1969; Com. 860.) - ¹ Cf. (for Sn^{IV} compounds), K. Jones and M. F. Lappert in "Organotin Compounds," ch. 6, ed. A. K. Sawyer, Marcel Dekker, New York, 1969. - COK, 1909. D. C. Bradley, M. B. Hursthouse, and P. F. Rodesiler, Chem. Comm., 1969, 14. E. C. Alyea, J. S. Basi, D. C. Bradley, and M. H. Chisholm, Chem. Comm., 1968, 495. D. C. Bradley and I. M. Thomas, Canad. J. Chem., 1962, 40, 449, 1335. R. Bonnett, D. C. Bradley, and K. J. Fisher, Chem. Comm., 1968, 886. M. F. Lappert and A. R. Sanger, unpublished work. D. C. Bradley and I. M. Thomas, J. Chem. Soc., 1960, 3857. I. M. Thomas, Canad. J. Chem., 1961, 39, 1386. G. W. A. Fowles, T. E. Lester, and R. A. Walton, J. Chem. Soc. (A), 1968, 1081.