Tricarbonylallyliron Cations as Intermediates in the Friedel-Crafts Acylation of Tricarbonylbutadieneiron

By E. O. GREAVES, G. R. KNOX,* and P. L. PAUSON

(Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, C.1)

Summary The intermediates $(\text{RCO}\cdot\text{CH}_2\text{CH}\cdots\text{CH}_2)$ -Fe(CO)₃⁺ AlCl₄⁻ (or PF₆⁻) probably have the acyl oxygen co-ordinated to iron and lose protons stereoselectively to give syn- or anti-tricarbonyl-acylbutadieneiron depending on the base used.

INTEREST in electrophilic substitution reactions of hydrocarbon ligands π -bonded to transition metals has centred on cyclic diene and dienyl complexes. An earlier report¹

that tricarbonylbutadieneiron (Ia) undergoes Friedel-Crafts acylation to give a mixture of 1- and 2-substitution products in the approximate ratio 4 to 1 (estimated after

liberation of the free ligand) is the only example of a noncyclic ligand undergoing substitution. However, the transition state for 2-substitution should be energetically unfavourable compared to that for 1-substitution by a factor greater than that experiment suggested.

Using a CH₃COCl-AlCl₃ Perrier complex under homogeneous conditions (CH₂Cl₂ solution) we have isolated an insoluble intermediate $[C_4H_6CO\cdot CH_3Fe(CO)_3]^+[AlCl_4]^-$ (II) as the only product (86% yield) before hydrolysis. This diamagnetic yellow crystalline salt and the PF_{6}^{-} analogue formed by metathesis, are assigned the anti-allyl structure from ¹H n.m.r. spectra (CD₃CN solution). The stereochemistry of the original hydrocarbon ligand is thus retained and the salt corresponds to 1-acylation. No other positional or stereo-isomers are detectable. The iron atom in (II) formally possesses only 16 electrons (like the tricarbonylallyliron cations described by Pettit²) but may obtain a closed-shell electronic configuration by intramolecular σ -donation of a lone pair of electrons from the acyl oxygen atom. This effectively lowers the acyl CO bond order (ν_{co} 1637 cm.⁻¹), restricts rotation around C-3-C-4, very significantly increases the value of the geminal coupling constant ($J_{\rm AB}$ -23 Hz.) and causes these protons to be unequally coupled to H_c (J_{AC} 2 Hz.; J_{BC} 6 Hz.).

Displacement of co-ordinated acyl-oxygen by other potential ligands is always accompanied by proton abstraction from the salt. Thus, (II) reacts with water to give a mixture of the *anti*-acetyl complex (Ib) (80%) [ν_{co} (acyl) 1668 cm.⁻¹] and the syn-derivative (Ic) (20%) [ν_{co} (acyl) 1677 cm.⁻¹], and a mixed product is also obtained with Ph₃P. That the products are stereo- rather than positional isomers¹ is shown by ¹H n.m.r. spectroscopy. In (Ic) the anti-proton (R² = H) appears as a doublet at $\tau 8.75$ $(J_{H-H_{c}} \ 8 \ Hz.)$ whilst in (Ib) the syn-proton $(R^{1} = H)$ appears as a doublet $(J_{H-H_c} 8 \text{ Hz.})$ at much lower field $(\tau \ 6.91)$. Dicyclohexylethylamine, a base which is sterically too bulky to act as a ligand, reacts stereospecifically with (II) and removes HA in the exclusive formation of tricarbonyl-anti-1-acetylbutadieneiron (Ib). This is rapidly and completely isomerised to the syn-isomer (Ic) by aqueous alkali or acid at room temperature or more slowly thermally without a catalyst, but is unaffected by Ph₃P or $(C_6H_{11})_2$ NEt. The mechanisms of the aqueous-phase isomerisations have not been determined, but deuterium is not incorporated when the reactions are performed in D_2O . These isomerisation reactions are clearly related to those of tricarbonyl-1-acetoxybutadieneiron which have been recently described.³

Reduction of (Ic) by borohydride is rapid and yields a single alcohol (Id) (m.p. 61.5°) which is diastereomerically related to the known⁴ tricarbonylhexa-3,5-dien-2-oliron, since both give the same tricarbonyl-syn-1-methylpentadienyliron cation (III) on treatment with fluoroboric acid and both are oxidised to (Ic) on treatment with MnO₂. Friedel-Crafts benzoylation of (Ia) gives a stable salt analogous to (II) which can be selectively converted into the anti-benzoyl derivative (Ie) (m.p. 86-88°) and the syn-isomer (If) (m.p. 81-83°).

Tricarbonylbutadieneiron is much less reactive than ferrocene in these Friedel-Crafts acylations and is also less reactive towards other electrophiles.

The allyl cation (II) is the first intermediate isolated and characterised during 'electrophilic substitution' of an organic ligand bonded to a metal atom but corresponds to the type of intermediate commonly postulated, notably cations (IV) postulated by Pettit⁵ in the substitution of tricarbonylcyclobutadieneiron.

(Received, July 11th, 1969; Com. 1024.)

- ¹G. G. Ecke (Ethyl Corporation, New York) U.S.P. 3,149,135.

- ²G. F. Emerson, J. E. Mahler, and R. Pettit, *Chem. and Ind.*, 1964, 836.
 ³C. H. DePuy, R. N. Greene, and T. E. Schroer, *Chem. Comm.*, 1968, 1225.
 ⁴ J. E. Mahler, D. H. Gibson, and R. Pettit, *J. Amer. Chem. Soc.*, 1963, 85, 3959.
 ⁵ R. Pettit, *Pure and Appl. Chem.*, 1968, 17, 253.