The Crystal Structure of Trimethyltin Isothiocyanate

By R. A. FORDER and G. M. SHELDRICK*

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary The crystal structure of Me_3SnNCS consists of zig-zag $-S \dots Sn-N=C=S \dots Sn-$ chains, bent only at sulphur, with nearly planar trimethyltin groups.

MÖSSBAUER studies¹ of trialkyltin isothiocyanates indicate that the trialkyltin groups are planar, with five-co-ordinated tin; the infra-red spectra² are consistent with a Weissenberg photographs taken with $Cu-K_{\alpha}$ radiation. The structure was solved by the heavy atom method and has been refined by full-matrix least-squares with anisotropic temperature factors for the tin and sulphur atoms, and isotropic temperature factors for the carbon and nitrogen atoms, to a conventional '*R* index' of 0.11 for 344 unique observed reflections.

 $R_3Sn-N=C=S$ rather than a $R_3Sn-S-C\equiv N$ structure, with a non-bonded S...Sn interaction and a chain structure bent at nitrogen. In view of the ambiguities in the interpretation of the spectroscopic data, and also for comparison with the structure of silyl isothiocyanate,³ where linearity at nitrogen provides evidence of involvement of the silicon 3d orbitals in the bonding, we have determined the crystal structure of trimethyltin isothiocyanate by single-crystal X-ray diffraction.

The crystals are orthorhombic, *Pbca*; $a = 13.20 \pm 0.01$, $b = 10.28 \pm 0.01$, $c = 12.01 \pm 0.01$ Å, Z = 8, $D_c = 1.82$. Intensities were estimated visually from equi-inclination The structure consists of zig-zag chains along the Z axis, all the atoms except those of the methyl groups lying approximately in planes perpendicular to the X-axis. The S-Sn-N-C-S skeleton is linear within experimental error, the chains being bent at sulphur. The trimethyltin group is almost planar, with a mean N-Sn-C angle of $95 \pm 2^{\circ}$, mean C-Sn-C angle of $119 \pm 2^{\circ}$, and mean Sn-C bond length of $2 \cdot 13 \pm 0 \cdot 03$ Å. The Sn-S bond is appreciably longer than $2 \cdot 47$ Å found⁴ for the 'single' bond in Me₃Sn-SC(S)NMe₂; the N-C and C-S distances are intermediate between the values in HN=C=S (1.22 and 1.56 Å)⁵ and MeS-C=N (1.16 and 1.68 Å respectively).⁶

These results are consistent with a structure intermediate between the valence-bond extremes:

$$= S \cdots Sn-N = C = S \cdots Sn-N =$$

$$\uparrow$$

$$-S - Sn - N = C - S - Sn - N =$$

The angle at sulphur is very close to the value of $99 \cdot 9^{\circ}$ found in MeSCN. The stereochemical inactivity of the nitrogen lone-pair is accounted for by the above scheme, and does not imply ' p_{π} - d_{π} bonding' between nitrogen and tin.

(Received, August 8th, 1969; Com. 1220.)

- ¹ B. Gassenheimer and R. H. Herber, Inorg. Chem., 1969, 8, 1120.
 ² M. Wada and R. Okawara, J. Organometallic Chem., 1967, 8, 261.
 ³ D. R. Jenkins, R. Kewley, and T. M. Sugden, Trans. Faraday Soc., 1962, 58, 1284.
 ⁴ G. M. Sheldrick, W. S. Sheldrick, R. F. Dalton, and K. Jones, to be published.
 ⁵ R. Kewley, K. V. L. N. Sastry, and M. Winnewisser, J. Mol. Spectroscopy, 1963, 10, 418.
 ⁶ S. Nakagawa, S. Takahashi, T. Kojima, and C. C. Lin, J. Chem. Phys., 1965, 43, 3583.