The Reaction of Nitric Oxide with Square-planar d⁸ Complexes of Rhodium(I)

By WILLIAM B. HUGHES

(Research and Development Division, Phillips Petroleum Company, Bartlesville, Oklahoma 74003)

Summary The reaction of nitric oxide with square-planar d^{8} complexes of rhodium(I) of the type RhClL₃ yields five-co-ordinate nitrosyl-nitro-derivatives RhCl(NO2)-(NO)L₂.

THE action of a number of small molecular species, including H_2 , X_2 , CO, SO₂, O₂, and C_2F_4 , on square-planar d^8 complexes of iridium(I) and rhodium(I) have been studied.¹ There has been no report of their reaction with nitric oxide. Two limiting modes of behaviour have been observed: scission of the addend molecule to give octahedral IrIII and Rh^{III} complexes (H₂, X₂) or adduct formation to give fiveco-ordinate IrI and RhI derivatives (CO, SO₂). With O₂ and $C_{2}F_{4}$ an intermediate situation results in which the metal is between a five-co-ordinate d^8 and a six-co-ordinate d^6 configuration.

We have found that with NO disproportionation of the addend molecule occurs to give five-co-ordinate NO-NO2 complexes. A green solid, decomposing at 154-156° and air-stable in the solid state, can be isolated from benzene or chloroform solutions of RhCl(CO)(PPh₃)₂ after treatment with NO (Matheson, 99.6%) under nitrogen. The i.r. spectrum (KBr) of this material in the 670-4000 cm.⁻¹ region shows, in addition to triphenylphosphine bands, absorptions at 1666(vs), 1640(m, sh), 1408(s), 1309(s), and 816(m) cm.^1. The first two bands lie in the range assignable to ν_{NO} in metal–NO complexes.² The three remaining bands lie in the regions associated with the asymmetric and symmetric stretching and the bending vibrations of a metalbonded NO_2 group.³ The presence of a weak band at 581 cm.⁻¹ indicates an N-bonded nitro- rather than an O-bonded nitrito-group.³ The complex Rh(NO₂)(CO)-(PPh₃)₂ [prepared from RhCl(CO)(PPh₃)₂ and KNO₂ in aqueous acetone] showed nitro-bands at 1355, 1326, 812, and 602 cm.-1. On the basis of the i.r. spectrum and analytical data we formulate the product as RhCl(NO₂)-(NO)(PPh₃)₂, (I).

In chlorobenzene, $\mathrm{RhCl}(\mathrm{PPh}_3)_3$ also reacted with NO to give (I). Analogous behaviour was exhibited by the complexes RhCl(CO)(AsPh₃)₂ and RhCl(AsPh₃)₃ which gave

Small amounts of NO2 in the NO can lead to nitroderivatives; thus, the reaction of NO with Ni(CO)₂(PPh₃)₂ gives $[Ni(NO)_2(PPh_3)_2]_2O$ in the absence of NO_2 but Ni(NO₂)(NO)(PPh₃)₂ in its presence.^{4a} We have purified our NO by a procedure reported to remove all NO₂^{4a} and have found that the same products are formed. The i.r. spectrum of the gas phase of a reaction utilizing purified NO indicated the presence of N₂O. These data suggest that the following general reaction is occurring:

RhCl(L)(MPh₃)₂ + 4NO
$$\rightarrow$$

RhCl(NO₂)(NO)(MPh₃)₂ + L + N₂O
L = MPh₃ or CO; M = P or As

Such a metal-catalysed disproportionation of NO to NO₂ and N₂O has been observed in the reaction of NO with Ni(CO)₄ to give Ni(NO₂)NO.^{4b} Formally, one may view the reaction as an oxidative-addition of $NO+NO_2^-$ to the d^8 Rh^I system. Indeed, we have found that (I) can be obtained by the addition of NO+Cl-:

$$\frac{\text{Rh}(\text{NO}_2)(\text{CO})(\text{PPh}_3)_2 + \text{NOCl} \rightarrow}{\text{Rh}(\text{Cl}(\text{NO}_2)(\text{NO})(\text{PPh}_3)_2 + \text{CO}}$$

Both the triphenylphosphine and triphenylarsine derivatives exhibit two bands in the N-O stretching region with a separation of ca. 27 cm.⁻¹ in KBr. Solution (CHCl₃) spectra show the same 27 cm.⁻¹ splitting which we attribute to the presence of isomers. These complexes are isoelectronic with the iridium complex [IrCl(NO)(CO)(PPh₃)₂]+ which has been found by X-ray studies to contain a bent (124°) Ir–N–O bond.⁵ The low values of ν_{NO} in the present Rh complexes are close to that found in the cationic Ir complex (1680 cm.⁻¹) and suggest that they may contain nonlinear Rh-N-O linkages.

(Received, July 14th, 1969; Com. 1054.)

³ K. Nakamoto, J. Fujita, and H. Murato, J. Amer. Chem. Soc., 1958, 80, 4817.
⁴ (a) R. D. Feltham, Inorg. Chem., 1964, 3, 119; (b) *ibid.*, p. 121.
⁵ D. J. Hodgson, N. C. Payne, J. A. McGinnety, R. G. Pearson, and J. A. Ibers, J. Amer. Chem. Soc., 1968, 90, 4486.

olive-brown RhCl(NO₂)(NO)(AsPh₃)₂ (II), m.p. 211-213° (dec.). The i.r. spectrum of (II) showed ν_{NO} at 1656(s) and 1629(s) cm.-1 and nitro-group bands at 1406, 1300, and 815 cm.⁻¹.

¹ L. Vaska, Accounts Chem. Res., 1968, 1, 335. ² J. Lewis, R. J. Irving, and G. Wilkinson, J. Inorg. Nuclear Chem., 1958, 7, 32; W. P. Griffith, J. Lewis, and G. Wilkinson, *ibid.*, p. 38.