Resonance Interaction in Thiophen Derivatives. The Crystal Structure of 2-Formylthiophen Thiosemicarbazone

By M. Mathew and Gus J. Palenik*
(Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada)

Summary The crystal structure determination of 2formylthiophen thiosemicarbazone has revealed the first example of an interaction between a thiophen ring and a group substituted on the ring.

A recent survey ${ }^{1}$ of the bond distances in thiophen derivatives included only one example of a simple asymmetrically substituted compound, α-thiophencarboxylic acid. However, the thiophen ring still maintained mm symmetry. The crystal structure determination of 2-formylthiophen thiosemicarbazone, 2FTTSC, has revealed the first example of a thiophen ring which is distorted from the ideal mm symmetry because of an interaction with the attached group.

The pale yellow crystals obtained from ethanol were studied by X-ray diffraction techniques using $\mathrm{Cu}-K_{\alpha}$ radiation: $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~S}_{2} \mathrm{~N}_{3}, M 185 \cdot 3$; monoclinic, space group $P 2_{1} / c$ (No. 14), $a=13 \cdot 580(6), b=5 \cdot 839(4), c=24 \cdot 024(9) \dot{A}$, $\beta=117.69(4)^{\circ}, \quad D_{\mathrm{m}}=1.450 \mathrm{~g} . / \mathrm{cm} .^{3}, \quad Z=8, \quad D_{\mathrm{c}}=1.459$ g. $/ \mathrm{cm} .^{3}$.

Figure. The 2-formylthiophen thiosemicarbazone molecule, illustrating the atomic numbering, the conformation and the average bond distances of the two molecules.

The intensities of 2848 non-zero reflections with 2θ $\leqslant 135 \cdot 0^{\circ}$ (measured with a G.E. diffractometer) were used in the analysis. The sulphur atoms were located in an E-map calculated with signs determined by the symbolic addition method. ${ }^{2}$ The light atoms were located in Fourier syntheses. The structure, including the hydrogen atoms, was refined by least-squares methods to an R (usual residual) of 0.052 .

The presence of two molecules of 2FTTSC per asymmetric unit permits two measurements to be made of each bond distance. The average values are given in the Figure; only the $\mathrm{C}(1)-\mathrm{C}(2)$ bonds with distances of 1.367 ± 0.005 and $1.387 \pm 0.004 \AA$ and the $\mathrm{C}(6)-\mathrm{N}(3)$ bonds with distances of 1.306 ± 0.004 and $1.327 \pm 0.004 \AA$ are significantly different in the two molecules. The $\mathrm{S}(1)-\mathrm{C}(1)$ bond length of $1.722 \pm 0.003 \AA$ is significantly different from the $\mathrm{S}(1)-\mathrm{C}(4)$ bond distance of $1.707 \pm 0.004 \AA$. The asymmetry in the thiophen ring is a result of the interaction between the planar ring and the approximately coplanar thiosemicarbazone side-chain. The $\mathrm{C}(1)-\mathrm{C}(5)$ distance of $1.436 \pm 0.004 \AA$ is significantly less than the $1.48 \AA$ expected for a single bond involving trigonal $\left(s p^{2}\right)$ carbon atoms. ${ }^{3}$ The double-bond character in the $\mathrm{C}(1)-\mathrm{C}(5)$ bond indicates a strong interaction between the ring and the side-chain. The increase in the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{S}(1)$ bonds relative to the $\mathrm{C}(4)-\mathrm{C}(3)$ and $\mathrm{C}(4)-\mathrm{S}(1)$ bonds is in agreement with some double-bond character in the $\mathrm{C}(1)-$ C(5) bond. Therefore, the 2FTTSC molecule is best described as a highly delocalized system including both the ring and side-chain.
(Received, July 14th, 1969; Com. 1039.)

[^0]
[^0]: ${ }^{1}$ V. Rychnovsky and D. Britton, Acta Cryst., 1968, 24, B, 725.
 ${ }^{2}$ J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
 ${ }^{3}$ R. A. Alden, J. Kraut, and T. G. Taylor, J. Amer. Chem. Soc., 1968, 90, 74, and references therein.

