Trigonal Symmetry of the Five-co-ordinate Complex of Nickel(II) Iodide with the Tripod Ligand Tris-(2-diphenylphosphinoethyl)amine

By P. Dapporto and L. Sacconi*
(Istituto di Chimica Generale e Inorganica, Università di Firenze, 39, Via J. Nardi, 50132 Firenze, Italy)

Summary A three-dimensional X-ray analysis shows that the co-ordination polyhedron of the five-co-ordinate complex $[\mathrm{Ni}(\mathrm{tda}) \mathrm{I}] \mathrm{I}$ is a regular trigonal-bipyramid, unlike that of the analogous complex of $\mathrm{Co}{ }^{\circ}{ }^{I I}$ which is a square-pyramid.

The tripod-like ligand tris-(2-diphenylphosphinoethyl)amine, $\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ (tda), forms five-co-ordinated complexes with $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ of formula $[\mathrm{M}($ tda $) \mathrm{X}] \mathrm{Y}$ $\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCS} ; \quad \mathrm{Y}=\mathrm{BPh}_{4}, \mathrm{BF}_{4}, \mathrm{PF}_{6}, \mathrm{I}\right) .{ }^{1}$ All the nickel(II) complexes are low-spin, whereas those of cobalt(II) are low- or high-spin depending on the nature of X and Y .

A three-dimensional X-ray analysis of the structure of the low-spin complex [Co(tda)I]I unexpectedly showed that the co-ordination polyhedron of this complex is a squarepyramid. ${ }^{2}$ Therefore it seemed interesting to undertake a structural investigation on the analogous complex $[\mathrm{Ni}(\mathrm{tda}) \mathrm{I}] \mathrm{I}$, which showed X-ray powder diagrams different from the cobalt(II) complex.

Crystal data: space group $R 3, a=16.363 \pm 0.014, c=$ $12.398 \pm 0.023 \AA$ (hexagonal cell), $Z=3, D_{\mathrm{c}}=1.67$, $D_{\mathrm{m}}=1.67 \mathrm{~g} . \mathrm{cm} .^{-3}$. The molecules lie on the threefold axes.

The 801 independent reflections observed were measured
on integrated Weissenberg films, using $\mathrm{Cu}-K_{\alpha}$ radiation. The structure determination was carried out with one Patterson and two three-dimensional Fourier syntheses, and refined by full-matrix least-squares, with isotropic temperature factors for all the atoms, to an R-factor of 0.063 .

The structure consists of discrete cations of $[\mathrm{Ni}(\mathrm{tda}) \mathrm{I}]^{+}$, with iodide ions as counter-ions. The nickel atoms are five-co-ordinate, linked to the nitrogen and to three phosphorus atoms of the ligand molecule, and to an iodine atom

Figure
(Figure). Threefold axes pass through the N, Ni, and I atoms of the cation complexes, as well as through the iodide ions. The co-ordination polyhedron geometry, therefore, is trigonal-bipyramidal ($C_{3 v}$ symmetry), with N and I in the apical positions and the three phosphorus atoms in the equatorial positions. The nickel atom is displaced by $0 \cdot 12 \AA$ from the equatorial plane, towards I . Independent bond lengths and angles about the nickel atom are: Ni-I $2.58 \pm 0.02, \quad \mathrm{Ni}-\mathrm{P} \quad 2.22 \pm 0.01, \quad \mathrm{Ni}-\mathrm{N} \quad 2.28 \pm 0.09 \AA$, $\mathrm{I}-\mathrm{Ni}-\mathrm{P} 93 \cdot 2 \pm 0.4^{\circ}$.

The co-ordination polyhedron of all the complexes of nickel(II) of this series must be assigned trigonal-bipyramidal geometry because of the identity of their electronic spectra.

The choice of either geometry by cobalt(II) and nickel(ir) in the two complexes $[\mathrm{M}(\mathrm{tda}) \mathrm{I}] \mathrm{I}$ can be accounted for by the crystal-field splitting energy values calculated for the low-spin five-co-ordinated complexes of $\mathrm{Co}^{I I}$ and $\mathrm{Ni}^{\mathrm{II}}$ with $D_{3 h}$ and $C_{4 v}$ symmetry. ${ }^{3}$ For $\mathrm{Co}^{\mathrm{II}}$ complexes, in fact, the $C_{4 v}$ symmetry is found to be more stable by $7 \cdot 4 \%$ than the $D_{3 h}$ symmetry, whereas for Ni^{11} complexes it is found less stable by 2.7%.

We thank the Italian C.N.R. and N.A.T.O. for financial support.
(Received, July 29th, 1969; Com. 1164.)
${ }^{1}$ L. Sacconi and I. Bertini, J. Amer. Chem. Soc., 1967, 89, $2235 ; 1968,90,5443$.
${ }^{2}$ P. L. Orioli and L. Sacconi, Chem. Comm., 1969, 1012.
${ }^{3}$ L. Sacconi, "Five-co-ordination in $3 d$ Metal Complexes". Plenary Lecture, X I.C.C.C., Tokyo and Nikko, 1967, Pure and Appl. Chem., 1968, 17, 97.

