1181

Ab Initio Calculations, including d-Orbitals, of the Electronic Structure of the Sulphate Ion

By I. H. HILLIER* and V. R. SAUNDERS

(Chemistry Department, University of Manchester, Manchester M13 9PL)

Summary Ab initio molecular orbital calculations using a Gaussian basis set, of the electronic structure of the sulphate ion reveal the importance of 3*d*-orbitals in describing the bonding in this ion.

THE nature of the bonding, particularly the importance of 3d-orbitals, in molecules containing latter second-row elements such as sulphur, is still a matter of some speculation.^{1,2} Semi-empirical molecular orbital calculations give varying degrees of d-orbital participation depending upon the parameters used.^{3,4} For this reason, and because of the lack of non-empirical studies on sulphur-containing molecules (except for H_2S^5 and COS⁶), we here report the results of ab initio molecular orbital calculations of the sulphate ion. A Gaussian basis set was used in which three such functions are used to describe each member of a minimal basis set of Slater-type orbitals.⁷ The orbital exponents of the latter, except for that of the 3d, were taken as the best atom values given by Clementi.⁸ In view of the large amount of computer time required for such calculations, it was not possible to optimize the 3*d*-orbital exponent. A value of 1.2 was chosen, following the suggestion of Craig et al.² Such a value is in line with the optimum 3d exponents found for some phosphorus compounds.^{9,10} The results of the two calculations with and without *d*-orbitals are summarized in the Table. The decrease of nearly 1 a.u. in the molecular energy compared with ca 0.05 a.u. in the case of H_2S^5 shows the importance of the 3d-orbitals, which is further illustrated by the large 3d population obtained by a Mulliken analysis.

TUDUU

	s and p sulphur basis set	s, p, and d sulphur basis set
10tal energy (a.u.)	-687.489	-688.327
Diagonal elements of Fock matrix (a.u.)		
35	-1.57	-1.57
3p	-0.66	-0.69
θ_{xx} (a.u.)	-31.0	-32.1
Atomic populations		
Sulphur		
35	1.35	1.19
3p	3.28	2.84
$3\dot{d}$		2.58
Oxygen		
2s	1.92	1.83
2p	4.94	4.54
Orbital energies (a.u.)		
$5t_{2}$	0.27022	0.09681
$1t_1$	0.26607	0.17720
1e	0.20367	0.00437
$4t_2$	-0.02906	-0.13663
$5a_1$	-0.12248	-0.23013
$3t_2$	-0.68420	-0.79217
$4\overline{a_1}$	-0.93320	-1.0035

The introduction of 3*d*-orbitals lowers the energy of the 1e molecular orbitals by removing their non-bonding characteristic, and the mixing of the 3*d*-orbitals into the $5t_2$ - orbitals brings about a reversal in the order of the $5t_2$ - and

 t_1 -orbitals. The population analysis which yields a negative charge on the sulphur atom when d-orbitals are included gives an exaggerated picture of the charge redistribution which occurs on expansion of the basis set. Owing to the diffuseness of the *d*-orbitals, their population should to a large extent be associated with the oxygen atoms. This is shown by the small change both in the sulphur 3s and 3pdiagonal elements of the Fock matrix at self-consistency, and the non-vanishing components of the quadrupole moment on the introduction of *d*-orbitals.

(Received, August 13th, 1969; Com. 1242.)

- ¹ D. W. J. Cruickshank, B. C. Webster, and D. F. Mayers, J. Chem. Phys., 1964, 40, 3733.
 ² D. P. Craig and C. Zauli, J. Chem. Phys., 1962, 37, 601.
 ³ D. P. Santry and G. A. Segal, J. Chem. Phys., 1967, 47, 158.
 ⁴ I. H. Hillier, J. Chem. Soc. (A), 1969, 878.
 ⁵ F. P. Boer and W. N. Lipscomb, J. Chem. Phys., 1969, 50, 989.
 ⁶ E. Clementi, J. Chem. Phys., 1962, 36, 750.
 ⁷ W. J. Hehre, R. F. Stewart, and J. A. Pople, Symposia Faraday Soc., 1968, No. 2, 15.
 ⁸ E. Clementi and D. L. Raimondi, J. Chem. Phys., 1963, 38, 2686.
 ⁹ D. B. Boyd and W. N. Lipscomb, J. Chem. Phys., 1967, 46, 910.