The Crystal Structure of $\alpha-\mathrm{Ag}_{3} \mathrm{NSeO}_{3}$

By J. K. Fawcett, V. Kocman, S. C. Nyburg,* and R. J. O'Brien

(Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto 181, Ontario, Canada)

Summary The crystal structure of the α-form of $\mathrm{Ag}_{3} \mathrm{NSeO}_{3}$ shows it to be not a salt but to have discrete molecules with a 3 -fold axis of symmetry.

The structure of $\mathrm{Ag}_{3} \mathrm{NSeO}_{3}$ has been in doubt ever since it was prepared in two crystal modifications (α, β) by Dostál and Rủžička. ${ }^{1}$ I.r. studies ${ }^{2}$ lent some support to the view that it might be formulated $\mathrm{Ag}_{3}^{3+} \mathrm{NSeO}_{3}^{3-}$.

We have carried out a full three-dimensional X-ray structure analysis on the α-form and find the molecule has $\mathrm{Ag}-\mathrm{N}$ covalent bonds. Crystals belong to the rhombohedral system $a_{\mathrm{r}}=6 \cdot 184(3) \AA, \alpha=86 \cdot 35(1)^{\circ}$, space group $R 3 c$;
$D_{m} 6.63 \mathrm{~g} . \mathrm{cm} .^{-3}$, calculated for two formula units, $6.56 \mathrm{~g} . \mathrm{cm} .^{-3}$. Cu- K_{α} data were collected on an automated four-circle diffractometer, corrected for absorption, and interpreted via the Patterson vector map. The structure has been refined by full anisotropic least-squares analysis to a conventional R factor of 0.036 . It is most easily described by reference to hexagonal axes $a_{\mathrm{h}}=8.462(4), c_{\mathrm{h}}=11.372(6) \AA$, $Z_{\mathrm{h}}=6$. The Se and N atoms lie on special positions $0,0, x$ (i.e. on three-fold axes). The Se was arbitrarily placed at the origin, whence N is at $(0,0,0 \cdot 8533)$. The Ag and O atoms lie on the general positions generated from ($0 \cdot 2059$, $0.2602,0.7800$) and ($0.1280,0.2085,0.0568$) respectively.

The Figure shows part of the structure. The molecules, which have three-fold axes of symmetry, have almost nearly regular tetrahedral configurations at each end: $\mathrm{N}-\mathrm{Se}-\mathrm{O}, 112 \cdot 7(6)^{\circ}$, $\mathrm{Se}-\mathrm{N}-\mathrm{Ag}, 112 \cdot 5(1 \cdot 1)^{\circ}$. The $\mathrm{Se}-\mathrm{O}$ and $\mathrm{N}-\mathrm{Ag}$ bonds are almost exactly eclipsed, there being $11 \cdot 1^{\circ}$ between these bonds in z-projection. The bond lengths are $\mathrm{Se}-\mathrm{N}, 1 \cdot 667(50)$, $\mathrm{Se}-\mathrm{O}, 1 \cdot 670(15)$, and $\mathrm{N}-\mathrm{Ag}, 2 \cdot 178(18) \AA$. The molecules are arranged on double helices and only those belonging to one strand of the helix are shown in the Figure to avoid confusion. The helical packing comes about from the close intermolecular approach, $2 \cdot 217(15) \AA$, between adjacent Ag and O atoms with $\mathrm{N}-\mathrm{Ag}-\mathrm{O}, 173 \cdot 8(1 \cdot 5)^{\circ}$, as indicated by broken lines. The other strand of the helix, coaxial with 3_{1}, has molecules located on the same three-fold axes but at $z=\frac{1}{2}$ from those shown in the Figure and c-glide related to them. This helical structure presumably arises from electrostatic forces between the polar molecules. Full details and discussion will be published elsewhere.
(Received, August 1st, 1969: Com. 1175.)

[^0]
[^0]: ${ }^{1}$ K. Dostál and A. Růžička, Z. anovg. Chem., 1965, 337, 325.
 ${ }^{2}$ R. Paetzold, K. Dostál, and A. Růžička, Z. anorg. Chem., 1966, 348, 1.

