1255

Electron Spin Resonance Studies on Quadrivalent Vanadium Compounds

By D. C. BRADLEY,* R. H. Moss, and K. D. SALES

(Department of Chemistry, Queen Mary College, Mile End Road, London, E.1)

Summary A survey of quadrivalent vanadium compounds has been made, and e.s.r. studies have brought to light a novel type of isomerism in $V(S_2CNEt_2)_4$.

PREVIOUS e.s.r. studies on vanadium(IV) compounds have mainly involved oxovanadium species¹ but recent work on vanadium tetra-t-butoxide² and vanadium tetradiethylamide³ has shown that spectra may be obtained on 'tetrahedral' VL₄ compounds and prompts this report of our studies on quadricovalent vanadium compounds (L = OR, NR₂, and S₂CNR₂).

We have confirmed substantially the results on monomeric V(OBu¹)₄² and V(NEt₂)₄³ and similarly found for V(NMe₂)₄⁴ in frozen methylcyclohexane (-150°) a resolved spectrum ($g_{||} = 1.955 \pm 0.004$; $g_{\perp} = 1.985 \pm 0.004$) with ⁵¹V hyperfine splitting ($A_{||} = 135$; $A_{\perp} = 29.7$ gauss) which is indicative of distortion to D_{2d} symmetry with $|x^2 - y^2\rangle$ ground state.

Solid vanadium tetramethoxide gave a very broad signal ($g = 1.955 \pm 0.005$) at room temperature with no hyperfine structure. Broad signals were also given in solution (methylcyclohexane or benzene; $g = 1.94 \pm 0.01$) but no hyperfine structure appeared even at low temperatures (-150°). This behaviour is consistent with that expected for the trimeric species with distortion from regular octahedral symmetry⁵ and line broadening due to magnetic dipole interactions. Solid vanadium tetraethoxide also gave a strong very broad signal at room temperature (g = 1.945 - 0.01) with no hyperfine structure and the line-width increased with rise in temperature (e.g. 500 gauss at 0°, 800 gauss at 50°). Solutions in benzene $(g = 1.952 \pm 0.005; A = 78.0$ gauss) methylcyclohexane $(g = 1.953 \pm 0.005; A = 79.1$ gauss), or carbon disulphide $(g = 1.951 \pm 0.005; A = 78.6$ gauss) each gave broad signals with partial resolution of the eight line ⁵¹V hyperfine interaction. Lowering the temperature caused loss of hyperfine structure and it was not possible to resolve anisotropic components down to -170° although narrowing of the line-width occurred (400 gauss at -20° , 200 gauss at -170°). These results are consistent with magnetic dipole interactions in the bridged dimeric structure V₂(OEt)₈ where the vanadium is five-co-ordinated.⁵

The possibility that tetrakis-NN-dialkyldithiocarbamates $V(S_2CNR_2)_4$ may contain eight-co-ordinated vanadium^{5,6} led us to investigate the methyl and ethyl derivatives. At room temperature, solid $V(S_2CNEt_2)_4$ gave a broad signal $(g = 1.981 \pm 0.006)$ whilst a benzene solution initially gave a resolved eight-line spectrum I $(g = 1.975 \pm 0.004; A = 72.5$ gauss) which slowly decreased in intensity in favour of a new spectrum $II (g = 1.977 \pm 0.004; A = 91.6$ gauss). Similar behaviour was found for solutions in carbon disulphide, methylene dichloride, or chloroform. Experiments showed that species I and II reach an equilibrium depending on solvent and temperature. Increased

temperature favours species II, whereas I may be obtained by recrystallization. Frozen solutions (benzene at -100to -150°) of II gave partial resolution of anisotropic components (A₁₁, 155 ± 5 ; A₁, 55 ± 5 gauss) consistent with the presence of either a distorted tetrahedral configuration (D_{2d}) arising from vanadium bonded to four unidentate ligands, or a dodecahedral (local D_{2d}) tetrachelated configuration. In I the vanadium may be eightco-ordinated (tetrachelated) or six-co-ordinated (cis or trans-bis-unidentate bis-chelated) but i.r. spectra suggest the presence of a tetrachelated species. Thus freshly prepared I (Nujol mull) had a strong broad band at 995 cm.-1 indicative of bidentate dithiocarbamato-groups (S…C…S stretching) whereas an aged sample gave strong sharp bands at 1006 and 953 cm.-1 due to unidentate ligands.7 Repeated recrystallization of the aged sample caused the disappearance of the bands at 1006 and 953 cm.⁻¹ and the reappearance of the broad band at 995 cm.⁻¹ due to species I. Fresh solutions of I in benzene or methylene dichloride had the broad band at 995 cm.-1, but new

sharper bands at 1003 and 960 cm.⁻¹ slowly appeared as IIwas reversibly formed. The electronic spectra showed for II a broad band at 10,800 cm.⁻¹, in the region expected for distorted tetrahedral V^{IV} complexes,⁵ absent for *I*. Clearly, further structural work on I and II is required (X-ray studies are in progress) but it is evident that $V(S_2CNEt_2)_4$ is exhibiting a novel form of isomerism. The solid methyl derivative $V(S_2CNMe_2)_4$ gave at room temperature a single absorption $(g = 1.979 \pm 0.005)$ with a narrower line-width than $V(S_2CNEt_2)_4$. The low solubility of width than $V(S_2CNEt_2)_4$. $V(S_2CNMe_2)_4$ precluded solution i.r. spectra but a weak e.s.r. signal (1:1, benzene-carbon disulphide solution) showed ⁵¹V hyperfine structure ($g = 1.973 \pm 0.004$; A = 89 gauss) reminiscent of species II of V(S₂CNEt₂)₄ although it was not possible either to resolve the anisotropic component at low temperature (-170°) or to demonstrate the presence of two species.

One of us (R.H.M.) thanks the Post Office Research Establishment for day-release to carry out this work.

(Received, July 7th, 1969; Com. 1001.)

- ¹ J. Selbin, Chem. Rev., 1965, 65, 153; Coord. Chem. Rev., 1966, 6, 107.
- ²G. F. Kokoszka, H. C. Allen, jun., and G. Gordon, Inorg. Chem., 1966, 5, 91.
- C. E. Holloway, F. E. Mabbs, and W. R. Smail, J. Chem. Soc. (A), 1968, 2980.
 R. H. Moss, M. Phil. Thesis, University of London, December, 1968; work carried out independently of that reported in ref. 3.
- F. C. Alyea and D. C. Bradley, J. Chem. Soc. (A), in the press.
 D. C. Bradley and M. H. Gitlitz, J. Chem. Soc. (A), 1969, 1152.
- 7 F. Bonati and R. Ugo, J. Organometallic Chem., 1967, 10, 257.