H-D Isotope Effect in the Reaction of Hydrogen Radicals with Isopropyl Alcohol in $6M-H_2SO_4$ in the Liquid and in the Glassy State

By K. VACEK[†] and C. von Sonntag*

(Institut für Strahlenchemie, Kernforschungszentrum Karlsruhe, 75 Karlsruhe, W. Germany)

Summary The kinetic isotope effect (kH/kD) for the hydrogen abstraction from $(CH_3)_2CHOH$ and $(CD_3)_2CDOH$ by hydrogen atoms in $6M-H_2SO_4$ is $10\cdot1$ at 299°K, $18\cdot1$ at 253°K, and only $2\cdot2$ at 90°K, indicating that at 90°K the reaction is mainly diffusion controlled.

In the radiolysis of aqueous solutions, hydrogen atoms are formed together with other reactive species, *i.e.* solvated electrons and OH radicals. In the presence of proton donors, additional hydrogen atoms are produced from solvated electrons (e^{-}_{solv}). The hydrogen atoms disappear either by combination or by reaction with other species present.

We have investigated the reactions of hydrogen atoms produced by the γ -irradiation of aqueous $6M-H_2SO_4$ in the presence of 0.1 mole/l. isopropyl alcohol. The hydrogen α to the hydroxy-group of isopropyl alcohol is abstracted preferentially to yield H_2 (reaction 1). In the case of (CD₃)₂CDOH, HD should be produced via reaction (2).

$$H + (CH_3)_2 CHOH \xrightarrow{R_H} H_2 + (CH_3)_2 \dot{COH}$$
(1)

$$H + (CD_3)_2 CDOH \xrightarrow{R_D} HD + (CD_3)_2 \dot{C}OH$$
(2)

When a mixture of $(CH_3)_2$ CHOH and $(CD_3)_2$ CDOH is used, there is competition for hydrogen atoms, and the H_2 /HD ratio of the hydrogen formed can be used to determine the kinetic isotope effect $(k_{\rm H}/k_{\rm D})$ of reactions (1) and (2). Two additional phenomena have to be considered in evaluating the kinetic isotope effect. First, there is an independent yield of H_2 , the so-called "molecular hydrogen", which is not influenced by the addition of $(CD_3)_2$ -CDOH. Secondly, hydrogen atoms will be abstracted from the hydroxy-group to give H_2 even in the presence of the deuteriated alcohol. Corrections for these additional H_2 -yields have been made.¹

With a temperature decrease from $299^{\circ}\kappa$ to $253^{\circ}\kappa$, the isotope effect increases from $10\cdot1$ to $18\cdot1$. If the difference between $k_{\rm H}$ and $k_{\rm D}$ is caused by a different activation barrier for reactions (1) and (2), we can estimate this difference, ΔE , by using equation (3).

$$\Delta E = \mathbf{R}T \ln k_{\rm H}/k_{\rm D} \tag{3}$$

Temperature dependence of the kinetic isotope (kH/kD) for reactions (1) and (2)

		$\Delta E(\text{kcal./mole})$
T (°к)	kH $/k$ D	eqn. (3)
299	10.1 + 0.3	1.33 ± 0.15
253	$18\cdot1 \pm 1\cdot5$	1.44 ± 0.15
90	$2 \cdot 2 + 0 \cdot 3$	(0.139)

The values in Table 1 show that, within the limits of experimental error, the difference of the activation energies remains unchanged at 299 and 253° K, whereas the ratio $k_{\rm H}/k_{\rm D}$ is almost doubled. If the mechanism of reactions (1) and (2) is unchanged over the whole temperature range, a value of $k_{\rm H}/k_{\rm D} = 2850$ would be expected at 90°K.

† On leave from: Nuclear Research Institute, Czechoslovak Academy of Sciences, Řež, near Prague.

However, the experimental value at this temperature was 2.2. We have shown² that the reaction of hydrogen atoms is diffusion-controlled in these low-temperature glasses. It is not the activation energy of the chemical reaction, but the activation energy of diffusion of hydrogen atoms (6.5 ± 0.5 kcal./mole) that controls the kinetics. If the activation energies for reactions (1) and (2) are lower than the activation energy for the diffusion, we should expect $k_{\rm H}/k_{\rm D} = 1.0$. The probabilities of the reactions (1) and (2) then become practically equal. From the experimental value at 90° k it follows that reaction (1) is still

preferred to reaction (2). This means that some of the hydrogen atoms encountering $(CD_3)_2CDOH$ molecules do not react, but diffuse away. The activation energy of reaction (1) in the gas phase has been reported³ to be about 6 kcal./mole. If the activation barrier is further raised by about 1.3 kcal./mole as a result of substitution of D for H, then reaction (2) is not necessarily a pure diffusion-controlled reaction. We assume that this is the reason why we obtain a value greater than 1.0 for $k_{\rm H}/k_{\rm D}$ at 90°K.

(Received, August 6th, 1969; Com. 1214.)

- ¹ K. Vacek and C. von Sonntag, to be published.
- ² K. Vacek and D. Schulte-Frohlinde, *J. Phys. Chem.*, 1968, 72, 2686.
- ³ K. T. Organesyan and A. B. Nalbandyan, Trudy Akad. Nauk Armyan. S.S.R., Khim. Nauki, 1965, 18, 237.