## The Incorporation of a 15β-Hydrogen Atom from the Medium in Cholesterol Biosynthesis

By M. AKHTAR,\* A. D. RAHIMTULA, and D. C. WILTON

(Department of Physiology and Biochemistry, The University of Southampton, Southampton SO9 5NH)

Summary The reduction of the 14(15)-double bond in the biological conversion of cholesta-8,14-dien- $3\beta$ -ol into cholest-7-en- $3\beta$ -ol occurs via a trans-addition, the 14 $\alpha$ -hydrogen being derived from the 4-position of NADPH, the 15 $\beta$ -hydrogen from a proton source.

It has recently been shown that the biosynthesis of cholesterol from lanosterol involves the loss of the  $15\alpha$ -hydrogen atom<sup>1-3</sup> and occurs through the intermediacy of an 8,14diene system.<sup>4</sup> In the further conversion of the 8,14-diene (III) into cholesterol a hydrogen atom from the 4-position of NADPH is incoprorated at C-14 $\alpha$  and another from a proton source at C-15.<sup>5</sup> We now show that the proton-source derived hydrogen atom at C-15 has the  $\beta$ -configuration. The stereochemical assignment has been made possible by the discovery that the pyrolytic conversion of the  $3\beta$ , $7\alpha$ dibenzoate (VI) into the 7,14-diene (VII) occurs predominantly with the loss of a  $15\alpha$ -hydrogen atom.

The stereochemical studies were carried out on three samples of cholest-7-en- $3\beta$ -ol (I). The first sample was prepared by the incubation of non-radioactive cholesta-8,14-dien- $3\beta$ -ol (III) with a 10,000 g supernatant of rat liver homogenate<sup>6</sup> in the presence of tritiated water. The cholest-7-ene- $3\beta$ -ol (I) thus prepared should contain radioactivity

<sup>†</sup> Due to the NADPH-H<sub>2</sub>O equilibrating enzyme system.<sup>6,12</sup>



Sample 1 (I; X = H, Y = T) prepared enzymically from (III; X = H) and  $T_2O$ .

Sample 2 (I; X = T, Y = H) prepared enzymically from (III; X = T) and  $H_2\mathrm{O}.$ 

Sample 3 (I; X = T, Y = H) prepared by the catalytic reduction of (III; X = H) with tritium gas.

at C-14 $\alpha$ <sup>†</sup> and C-15 due to the reduction of the 14(15)-double bond (reaction i) and at C-9 due to the isomerization reaction (reaction ii)<sup>5</sup> (Scheme).

8,14-diene 
$$\xrightarrow{(i)}$$
 8-ene  $\xrightarrow{(ii)}$  7-ene  
anaerobic anaerobic  
NADPH  
SCHEME

C 8 7

Ť T

The second sample was prepared as above except that in this case, the substrate  $[15^{-3}H_1]$ -cholesta-8,14-dien-3 $\beta$ -ol (III)<sup>‡</sup> contained radioactivity at C-15 and the medium contained

59% of the total radioactivity present at C-15 in the same conversion. These experiments show that the two biosynthetic samples contain radioactivity at C-15 associated

## Table

Degradation of the three samples of cholest-7-en-3 $\beta$ -ol (I).

|                           |        |            |       |          |      | Radioactivity in |                            |          |  |
|---------------------------|--------|------------|-------|----------|------|------------------|----------------------------|----------|--|
|                           |        |            |       |          |      | Sample 1         | Sample 2<br>(c.p.m./mmole) | Sample 3 |  |
| holest-7-en-3 $\beta$ -ol | (I)    |            |       |          | ••   | 160,470          | 49,700                     | 38,070   |  |
| 14-Epoxide (IV)           | • • •  |            |       |          |      | 141,370          | 49,650                     | 26,000   |  |
| 14-Diene (VII)            |        |            |       |          |      | 139,880          | 37,800                     | 18,000   |  |
| 5-Ketone (VIII)           |        |            |       |          |      | 74,470           | 29,526                     | 11,150   |  |
| otal amount of t          | ritium | at C-15    |       |          |      | 66,630           | 20,174                     | 14,850   |  |
| ritium lost from          | C-15 d | luring the | e pvr | olysis   |      | 1490             | 11,900                     | 8000     |  |
| of tritium lost i         | from C | C-15 durii | ıg th | e pyroly | vsis | 3%               | 59%                        | 54%      |  |
|                           |        |            |       |          |      |                  |                            |          |  |

no isotopic hydrogen. The third sample of cholest-7-en- $3\beta$ ol (I) was prepared by the catalytic reduction of nonradioactive cholesta-8,14-dien- $3\beta$ -ol (III) with tritium gas (generated from tritiated water and lithium metal). The resulting cholest-8-en- $3\beta$ -ol§ was isomerized enzymically as above to a mixture of cholest-8-en- $3\beta$ -ol and cholest-7-en- $3\beta$ -ol (I).

The three samples of cholest-7-en-3 $\beta$ -ol (I), which contained radioactivity at C-15 and varying amounts of cholest-8-en-3 $\beta$ -ol as a contaminant, were subjected to two series of degradations. Firstly, cholest-7-en-3 $\beta$ -ol (I) was oxidized with CrO<sub>3</sub>-HOAc<sup>7</sup> to the 8,14-epoxide (IV). The latter compound arises only from cholest-7-en-3 $\beta$ -ol (I); the impurity of cholest-8-en-3 $\beta$ -ol does not interfere with this conversion. Secondly, cholest-7-en-3 $\beta$ -ol (I) was oxidized with SeO<sub>2</sub>-HOAc<sup>8</sup> to the 3 $\beta$ ,7 $\alpha$ -diacetate (V). The latter compound (V) was converted into the 3 $\beta$ ,7 $\alpha$ -dibenzoate (VI) which on pyrolysis in dimethylaniline<sup>8</sup> furnished the 7,14-diene (VII). The latter compound (VII), once again, arises only from cholest-7-en-3 $\beta$ -ol (I) and not from cholest-8-en-3 $\beta$ -ol. The diene (VII) was converted into the 15-ketone (VIII).<sup>9</sup>

The total amount of radioactivity at C-15 of cholest-7-en- $3\beta$ -ol (I) = specific activity of the 8,14-epoxide (IV) minus the specific activity of the 15-ketone (VIII).

Similarly, the amount of radioactivity removed from C-15 in the pyrolytic conversion of the dibenzoate (VI) into the 7,14-diene (VII) = specific activity of the 8,14-epoxide (IV) minus the specific activity of the 7,14-diene (VII). The results in the Table show that sample 1, which was biosynthesized from non-radioactive cholesta-8,14-dien-3 $\beta$ -ol (III) in the presence of tritiated water, lost less than 3% of the total radioactivity present at C-15 in the conversion of the 3 $\beta$ ,7 $\alpha$ -dibenzoate (VI) into the 7,14-diene (VII). However, sample 2, which was biosynthesized from [15-<sup>3</sup>H<sub>1</sub>]cholesta-8,14-dien-3 $\beta$ -ol (III) in a non-isotopic medium, lost with opposite orientations and that the pyrolytic conversion of the  $3\beta$ , $7\alpha$ -dibenzoate (VI) into the 7,14-diene (VII) occurs with a great deal of stereospecificity. Sample 3, which was obtained by the catalytic reduction of non-radioactive cholesta-8,14-dien- $3\beta$ -ol (III) with tritium gas and which



should contain the labelled hydrogen atom in the  $15\alpha$ -orientation, lost 54% of the radioactivity in the pyrolytic step. Assuming that the catalytic hydrogenation results in the *cis*-addition of hydrogen atoms at C-14 $\alpha$  and C-15 $\alpha$ , the similarity in the loss of tritium during the pyrolysis in sample 2 and 3 suggests that the tritium atom in the bio-synthetic sample 2 has the 15 $\alpha$ -orientation. These results

<sup>‡</sup> [15-<sup>3</sup>H<sub>1</sub>]-Cholesta-8,14-dien-3β-ol (III) was prepared by the acid equilibration of non-radioactive cholesta-8,14-dien-3β-ol(III) (as the acetate) under the same conditions used by Gaustchi and Bloch<sup>11</sup> for the conversion of 4,4-dimethylcholesta-5,7-dien-3β-ol acetate into 4,4-dimethylcholesta-8,14-dien-3β-ol acetate except that a trace of tritiated water was included. [15-<sup>3</sup>H<sub>1</sub>]-Cholesta-8,14-dien-3β-ol (III) so prepared contains about 40% of the total radioactivity at C-15. The remaining radioactivity was not present at C-7 or C-16. The absence of radioactivity at C-16 is deduced from the knowledge that, under identical conditions, cholesta-5,7-dien-3β-ol acetate containing tritium at C-16 (biosynthesized from [5RS-<sup>3</sup>H<sub>2</sub>]-MVA) lost no radioactivity from C-16 when rearranged into cholesta-8,14-dien-3β-ol acetate.

 $[14\alpha, 15\alpha-3H_2]$ -Cholest-8-en-4 $\beta$ -ol contains up to 71% of the total radioactivity at C-14 $\alpha$  and C-15 $\alpha$ . A part of the remaining radioactivity could be present at C-16. The total radioactivity at C-15 is obtained from the specific activity of the 15-ketone (VIII). It is quite possible that in the preparation of this compound (VIII) some of the radioactivity, if present at C-16, will also be removed. This, however, will not affect the main conclusions of this paper. In such an event the 54% of the radioactivity removed in the conversion of (VI) into (VIII) will be an underestimation.

## 1280

are valid only as far as they give information on the percentage of the total radioactivity at C-15 removed in the pyrolysis step. The degradation of the three samples of cholest-7-en-3 $\beta$ -ol (I) was repeated twice with essentially similar results. The fact that when tritium is located at C-15 $\beta$  the conversion of the dibenzoate (VI) into the 7,14diene (VII) occurs with the exclusive loss of the  $15\alpha$ hydrogen atom whereas the presence of tritium at C-15 $\alpha$ results in only a 60% loss of label may be attributed to the alteration of the stereospecificity of elimination by the presence of hydrogen isotopes.¶

We therefore infer that the reduction of the 14(15)-double bond in the biological conversion of cholesta-8,14-dien-3 $\beta$ -ol

(III) into cholest-7-en-3 $\beta$ -ol (I) occurs through a transaddition, the  $14\alpha$ -hydrogen atom being derived from the 4position of NADPH<sup>5</sup> and the  $15\beta$ -hydrogen atom from a proton source. Similar observations on the reduction of the 7(8)-double bond in the conversion of cholesta-5,7-dien-3 $\beta$ -ol into cholesterol have been published.<sup>6</sup> These results, together with the previous observations from this<sup>3</sup> and other<sup>1,2</sup> laboratories also suggest that in the biosynthesis of cholesterol from lanosterol, the  $15\alpha$ -hydrogen atom of the latter is lost and that its  $15\beta$ -hydrogen atom becomes the  $15\alpha$ hydrogen atom of cholesterol. Recently Caspi et al.,10 using a different approach, have arrived at the same conclusion.

(Received, August 11th, 1969; Com. 1228.)

¶ We thank the referee for prompting us to insert this view and for pointing out that related behaviour has been observed by Cornforth et al.18

<sup>1</sup> L. Canonica, A. Fiecchi, M. G. Kienle, A. Scala, G. Galli, E. G. Paoletti, and R. Paoletti, J. Amer. Chem. Soc., 1968, 90, 3597.

- <sup>2</sup> G. F. Gibbons, L. J. Goad, and T. W. Goodwin, Chem. Comm., 1968, 1458.
  <sup>3</sup> M. Akhtar, A. D. Rahimtula, I. A. Watkinson, D. C. Wilton, and K. A. Munday, European J. Biochem., 1969, 9, 107.
- <sup>4</sup> I. A. Watkinson and M. Akhtar, Chem. Comm., 1969, 206.
  <sup>5</sup> M. Akhtar, A. D. Rahimtula, I. A. Watkinson, D. C. Wilton, and K. A. Munday, Chem. Comm., 1969, 149.

- <sup>6</sup> M. Akhtar, A. D. Kahimtula, I. A. Watkinson, D. C. Wilton, and K. A. Munday, *Chem. Comm.*, 1969, 149.
  <sup>6</sup> D. C. Wilton, K. A. Munday, S. J. M. Skinner, and M. Akhtar, *Biochem. J.*, 1968, 106, 803.
  <sup>7</sup> L. F. Fieser, *J. Amer. Chem. Soc.*, 1953, 75, 4395.
  <sup>8</sup> L. F. Fieser and G. Ourisson, *J. Amer. Chem. Soc.*, 1953, 75, 4404.
  <sup>9</sup> J. C. Knight, P. D. Klein, and P. Z. Szezepanik, *J. Biol. Chem.*, 1966, 241, 1502.
  <sup>10</sup> E. Caspi, P. J. Ramm, and R. E. Gain, *J. Amer. Chem. Soc.*, 1969, 91, 4012.
  <sup>11</sup> F. Gautschi and K. Bloch, *J. Biol. Chem.*, 1958, 233, 1343.
  <sup>12</sup> G. Popjak, DeW. S. Goodman, J. W. Cornforth, R. H. Cornforth, R. H. Cornforth, R. H. Cornforth, G. Popiak, and L. Yengovan, *J. Biol. Chem.*, 1966, 241, 3970.
- <sup>13</sup> J. W. Cornforth, R. H. Cornforth, G. Popjak, and L. Yengoyan, J. Biol. Chem., 1966, 241, 3970.