D-Isoleucine, an Exceptional Amino-acid Residue of the Antibiotic, Monamycin

By K. BEVAN, J. S. DAVIES, C. H. HASSALL,* and D. A. S. PHILLIPS

(Department of Chemistry, University College of Swansea, Swansea, Glam., SA2 8PP)

Summary D-Isoleucine has been isolated from a natural peptide, the antibiotic monamycin, for the first time.

INVESTIGATIONS on the biosynthesis of valinomycin,¹ triostin,² bacitracin,³ tyrocidin,⁴ and other cyclic peptides⁵

detailed study of its properties. A comparison of the optical rotations of the pure amino-acid and its 2,4-dinitrophenyl derivative with those of the isoleucine isomers7,9 established that our compound was either D-alloisoleucine or D-isoleucine (Table).

TABLE

	From monamycin	L-Isoleucine	D-Isoleucine	L-Alloisoleucine	D-Alloisoleucine
$[\alpha]_{D}^{25}$		+36.78	- 36.6ª	+34.9a	
$\mathrm{DNP}\text{-}[\alpha]_D{}^{25}$	87·0°	+ 40.75 + 84.8°	-40.75	+38.50 $+87.5^{\circ}$	- 38.45

[solvents: a, ln-HCl; b, 6n-HCl; c, ln-NaOH].

have established that the constituent D-amino-acids are not incorporated directly into these antibiotics. It has been suggested that these D-residues arise from C-2 epimerisation of the corresponding members of the L-series, although the stage at which this occurs in the sequence of biosynthesis of the cyclic peptides has not been defined. A survey of amino-acids produced by micro-organisms was in accord with this suggestion.⁶ For example, it was remarked that, as a consequence, "while there are many compounds which contain L-isoleucine or D-alloisoleucine, the two other isomers D-isoleucine and L-alloisoleucine did not occur in the peptides described so far."

The constituents of the monamycin family of antibiotics are cyclohexadepsipeptides⁷ with one α -hydroxy-acid residue -either L-2-hydroxy-3-methylpentanoic acid, or L-2hydroxy-3-methylbutyric acid. Each compound contains one residue of either D-isoleucine or D-valine. The assignment of configuration to the D-isoleucine is based on a

- ¹ J. C. MacDonald, *Canad. J. Microbiol.*, 1960, **6**, 27. ² T. Yoshida and K. Katagiri, *Biochemistry*, 1969, **8**, 2645.
- ⁸ N. Cornell and J. E. Snoke, Biochim. Biophys. Acta, 1964, 91, 533.
- ⁴ M. A. Ruttenberg and B. Mach, Biochemistry, 1966, 5, 2864.
 ⁵ E. Katz, Lloydia, 1968, 31, 364.

- ⁶ E. Katz, Lioyata, 1905, 31, 304.
 ⁶ M. Bodanszky and D. Perlman, Science, 1969, 163, 352.
 ⁷ C. H. Hassall, R. B. Morton, Y. Ogihara, and W. A. Thomas, Chem. Comm., 1969, 1079; K. Bevan, J. S. Davies, M. J. Hall, C. H. Hassall, R. B. Morton, Y. Ogihara, D. A. S. Phillips, and W. A. Thomas, unpublished results.
 ⁸ W. A. H. Huffman and A. W. Ingersoll, J. Amer. Chem. Soc., 1951, 73, 3366.
 ⁶ W. D. Berdeld, K. Scher, Chem. Comm.
- ¹⁰ W. A. H. Hullman and H. W. Ingelson, J. Amer. Chem. Soc., 1954, 76, 1328.
 ¹⁰ W. S. Fones, J. Amer. Chem. Soc., 1954, 76, 1377.
 ¹¹ K. A. Piez, J. Biol. Chem., 1954, 207, 77.
 ¹² J. C. Sheehan, H. G. Zachan, and W. B. Lawson, J. Amer. Chem. Soc., 1958, 80, 3349.
- ¹³ J. Shoji, K. Tori, and H. Otsuka, J. Org. Chem., 1965, 30, 2772.

The compound was identified as D-isoleucine through oxidation with chloramine-T to the corresponding enantiomer of α methylbutyraldehyde [2,4-dinitrophenylhydrazone, C11H14- N_4O_4 , m.p. 134–136°, $[\alpha]_D^{26} - 29.8^\circ$ (c, 1 in AcOH)]. The related product from D-alloisoleucine has $[\alpha]_D + 29.9^{\circ.10}$ Moreover, there was evidence from amino-acid analyses (Beckman Model 120C) for the assignment of our compound to the isoleucine series; authentic isoleucine, alloisoleucine, and leucine were clearly differentiated.¹¹

According to the " α -epimerisation rule",⁶ D-isoleucine would be derived from L-alloisoleucine, an isomer which has not, itself, been observed in Nature. However, there is one example of a natural amino-acid with this configuration. N-Methyl-y-methyl-L-alloisoleucine has been obtained from both etamycin¹² and triostin C.¹³

(Received, August 27th, 1969; Com. 1314.)