Ligand Exchange Kinetics of Metal Dimethyl Sulphoxide Complexes, ML_{6}^{2+} , in **Mixed Solvents**

By LAWRENCE S. FRANKEL

(Rohm and Haas Co., Research Laboratory 13, 5000 Richmond Street, Philadelphia, Pennsylvania, 19137)

Summary The ligand exchange kinetics of ML_6^{2+} [M = Co^{II} or Ni^{II}, L = dimethyl sulphoxide (DMSO) in DMSO and the mixed solvents $\mathrm{DM}\bar{\mathrm{SO}}\text{-}\mathrm{MeNO}_2$ and $\mathrm{DM}\mathrm{SO}\text{-}\mathrm{CH}_2\mathrm{Cl}_2$ are independent of the composition of the solvent.

In all previous reports, ligand exchange reactions of octahedral Co^{II} and Ni^{II} have been studied in pure solutions of the ligand. Under these conditions the ligand concentration dependence can not be studied. We report a study of ML_6^{2+} (L = DMSO) in DMSO and in admixtures of nitromethane and methylene chloride. The latter two solvents are inert in the sense that they are nonco-ordinating.

The composition of the bulk solutions used was pure DMSO; 2·2 M, 1·1 M and 0·6 M-DMSO in nitromethane and 1.1 M-DMSO in methylene chloride. Analysis of the variable temperature ¹H n.m.r. spectra by standard techniques¹ shows that the transverse relaxation rate data fall on a common line. This implies a constant value for the ligand exchange rate. The following kinetic parameters are obtained: NiL₆²⁺, $k(25^{\circ}) = 3.2 \times 10^3$ sec.⁻¹, $\Delta H^* = 13.0$

¹ T. J. Swift and R. E. Connick, J. Chem. Phys., 1962, 37, 307.
² S. Thomas and W. L. Reynolds, J. Chem. Phys., 1967, 46, 4164.
³ H. P. Bennetto and E. F. Caldin, Chem. Comm., 1969, 599.
⁴ C. H. Langford and T. R. Stengle, Ann. Rev. Phys. Chem., 1968, 19, 193.

Kcal/mole, $\Delta S^* = 3.2$ e.u. CoL_6^{2+} , $k(25^\circ) = 1.7 \times 10^5$ sec.⁻¹, $\Delta H^* = 9.6$ Kcal/mole $\Delta S^* = -0.4$ e.u. The exchange parameters for NiL_6^{2+} is in reasonable agreement with data previously reported in DMSO.²

That nitromethane was not co-ordinated was established by integrating the co-ordinated DMSO peak from the metal complex in a pure solution of nitromethane. The solvation numbers, measured at the extreme temperatures of the kinetic data, were 5.9 \pm 0.2 for Ni and 6.0 ± 0.2 for Co.

The dielectric constant of methylene chloride will greatly increase the concentration of outer-sphere perchlorate-ion pairs. Since the same ligand exchange parameters are obtained, a mechanism which involves an outer-sphere ionpair is very unlikely.

The independence of the exchange rate on the ligand concentration, composition, and fluidity³ is consistent with a dissociative mechanistic pathway.⁴ This implies there is an intermediate in the substitution pathway.

(Received, August 18th, 1969; Com. 1267.)