A Hammett Correlation for the Rates of Diels-Alder Reactions of 2-Substituted Butadienes

By Takashi Inukai* and Takeshi Kojima
(The Central Research Laboratories, Chisso Corporation, Kamariya, Kanazawa-ku, Yokohama, Japan)

Summary A comparison of two sets of data on the relative rates and isomer ratios of Diels-Alder reactions of 2 -substituted butadienes with methyl acrylate and with the methyl acrylate-aluminium chloride complex reveals an excellent Hammett correlation with σ^{+}.

Although Hammett correlation for Diels-Alder reactions has been reported, ${ }^{1}$ the substituent changes were confined to those directly on the benzene ring either of the dienes or dienophiles, except ${ }^{2}$ where the substituents were introduced on the diene or dienophile functions. A four-parameter equation was presented ${ }^{2}$ to correlate the sets of observed rate data, which are sometimes the average of rates of formation of isomeric products.

We report that a simple two-parameter $\left(p \sigma^{+}\right)$correlation is obtained when the "partial rate factors" of formation of isomers from 2-X-butadienes $\left(\mathrm{X}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Cl}, \mathrm{CF}_{3}\right.$, and CN) and methyl acrylate are compared with the corresponding data with the methyl acrylate-aluminium chloride complex as the dienophile ${ }^{3}$ (Equation 3).

The isomer distribution of the products ($p: m$ ratio) and relative rates, 2 -X-butadiene as opposed to butadiene, at 20° in benzene were determined in a way similar to that described previously, ${ }^{4}$ and the observed partial rate factors (p.r.f.) were calculated by somewhat artificially assigning the " p " and " m " products to the action of the β-carbon
of the dienophile at the 1 - and 4 -positions of the dienes, respectively. The p.r.f. ${ }^{(\mathrm{u})}$ for the uncatalysed (methyl acrylate) reaction and p.r.f. (c) for catalysed (methyl acrylateAlCl_{3}) reaction are listed in the Table.

Partial rate factors at 20° a

a Reactivity of one terminal carbon of unsubstituted butadiene is taken as unity for each set of p.r.f.'s; note that the actual rate constants for the catalyzed reactions are 10^{5} times as large as those for the corresponding members of the uncatalysed reactions. ${ }^{3}$

The observed p.r.f. is related to the reactivities (k) of the pertinent positions of the dienes (based on a normalized concentration of s-cis conformers through which the Diels-Alder reaction proceeds) (Equation 1), K 's are

$$
\begin{align*}
& \text { p.r.f. }{ }^{\mathrm{u})}=\left(k^{\mathrm{x}} / k^{\mathrm{H}}\right)^{(\mathrm{u})} K^{\mathrm{x}}\left(K^{\mathrm{H}}+1\right) /\left[K^{\mathrm{H}}\left(K^{\mathrm{x}}+1\right)\right] \\
& \text { p.r.f. }{ }^{\mathrm{c})}=\left(k^{\mathrm{x}} / k^{\mathrm{H}}\right)^{(\mathrm{c})} K^{\mathrm{x}}\left(K^{\mathrm{H}}+1\right) /\left[K^{\mathrm{H}}\left(K^{\mathrm{x}}+1\right)\right] \tag{1}
\end{align*}
$$

Hammett plot: σ_{p}^{+}for 1-position and σ_{m}^{+}for 4-position: $\sigma_{p}^{+}{ }_{-}$-$+\sigma_{m}^{+-}$- for 2,3-dimethylbutadiene (designated by $2,3-\mathrm{Me}$).
${ }^{1}$ Sce ref. 2 and references therein.
${ }^{2}$ M. Charton, J. Org. Chem., 1966, 31, 3745.
${ }^{3}$ T. Inukai and T. Kojima, J. Org. Chem., 1967, 32, 872.
${ }^{4}$ T. Inukai and T. Kojima, J. Org. Chem., 1966, 31, 1121.
the equilibrium constants for s-trans $\rightleftharpoons \mathrm{s}$-cis). The ratio $k^{\mathbf{X}}: k^{\mathbf{H}}$ cannot be evaluated since the K-values are unknown. Hence a correlation is obtained in the form of Equation 2, eliminating the unknowns by side-by-side division. The Figure shows the Hammett plot according to

$$
\begin{gather*}
\text { p.r.f.(c) } / \text { p.r.f. }{ }^{(\mathrm{u})}=\left(k^{\mathrm{X}} / k^{\mathrm{H}}\right)^{(\mathrm{c})} /\left(k^{\mathrm{x}} k^{\mathrm{H}}\right)^{(\mathrm{u})} \tag{2}\\
\quad \log \text { p.r.f. }{ }^{(\mathrm{c})}-\log \text { p.r.f. }{ }^{\mathrm{u})}=\rho \sigma^{+} \tag{3}
\end{gather*}
$$

Equation 3 where $\rho=-3 \cdot 12(r=0 \cdot 994, s=0 \cdot 129)$.
It can be shown from the isomer ratios that Equations 4 and 5 do not hold under the conditions of Equation 3.

$$
\begin{align*}
\log \left(k^{\mathbf{x}} / k^{\mathrm{H}}\right)^{(\mathrm{u})} & =\rho^{(\mathrm{u})} \sigma^{+} \tag{4}\\
\log \left(k^{\mathbf{x}} / k^{\mathbf{H}}\right)^{(\mathrm{c})} & =\rho^{(\mathrm{c})} \sigma^{+} \tag{5}
\end{align*}
$$

Therefore, although each set of data with a dienophile (Equation 4 or 5) does not follow the Hammett correlation, the change of $k^{\mathrm{x}} / k^{\mathrm{H}}$ due to the change of the dienophile character is linearly dependent on $\sigma_{\mathbf{X}}^{+}$.
(Received, August 25th, 1969; Com. 1303.)

