Total Synthesis of Zizaane-type Sesquiterpenoids

By FUSAO KIDO, HISASHI UDA, and AKIRA YOSHIKOSHI*

(Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai, Japan)

Summary Zizaane-type sesquiterpenoids have been synthesised from methyl (+)-camphene carboxylate.

ZIZAANE-TYPE sesquiterpenoids, *e.g.* zizaene (tricyclovetivene)¹ (Ia), khusimol² (Ib), zizanoic acid² (Ic), and epizizanoic acid³ (Id), occur in vetiver oil. We report their total synthesis.

Lithium aluminium hydride reduction of methyl (+)camphene carboxylate⁴ (IIa) gave the alcohol (IIb), m.p. 31°, which was then oxidised to the aldehyde (IIc) by dicyclohexylcarbodi-imide-dimethyl sulphoxide-phosphoric acid⁵ in 80% yield. In the presence of sodium ethoxide, (IIc) condensed with acetone to give the transenone (IId), $\lambda_{\rm max}$ 230 nm. (ϵ 9900), $\nu_{\rm max}$ 1692 cm.⁻¹, δ 6.01, 6.94 (d., 1H each, J 16 Hz.), in 76% yield. Hydrocyanation of (IId) with potassium cyanide-ammonium chloride⁶ and subsequent ozonisation of the resulting cyano-ketone led to the cyano-diketone (IIe), ν_{max} 2240, 1738, and 1721 cm.⁻¹, shown to be homogeneous on t.l.c. and n.m.r., in 45% overall yield from (IId). Benzoic acid-piperidine catalysed the cyclisation of (IIe) to the tricyclic ketone (IIIa), m.p. 62–62.5°, $\lambda_{\rm max}$ 240 nm. (ϵ 13,300) (62% yield), and the n.m.r. coupling pattern of the latter at δ 2.66 (d., 1H, J 7.4 Hz.) was suggestive of an a-cyano-group. Attempted desulphurisation of the ethylenethioacetal of (IIIa) and hydrolysis of its cyano-group to a carboxy-group were unsuccessful, while a hydroxycompound obtained by sodium borohydride reduction of (IIIa) underwent smooth hydrolysis in boiling methanolic potassium hydroxide giving a carboxylic acid, and esterification of the crude hydrolysis product with diazomethane followed by Jones oxidation afforded the desired keto-ester

(IIIb), m.p. 91–92°, λ_{max} 241 nm. (ϵ 15,400), ν_{max} 1730 and 1659 cm.⁻¹, in 70% yield from (IIIa). The unsaturated ester (IIIc) was obtained by desulphurisation of the ethylenethioacetal of (IIIb) with Raney nickel.

The coupling pattern of (IIIc) at δ 2.63 (q., 1H, J 4 and 10 Hz.) indicated an equatorial ester group; however its orientation depends on the conformation of the cyclohexene ring. Assuming that a chair conformation is

preferable for the cyclohexene ring, the ester group would be α.

Osmic acid oxidation of (IIIc) yielded the dihydroxyester (IV), δ 3.07 and 4.21 (m., 1H each, $W_{1} = 18.2$ and 19.3 Hz., respectively; assigned to the axial protons on C-4 and C-7), whose monomesylate was treated with potassium t-butoxide at room temperature for 15 min., causing pinacol rearrangement to the keto-ester (Va), m.p. 92-93°, v_{max} 1726 and 1692 cm.⁻¹, o.r.d. $[\phi]_{310}$ -639. Prolonged treatment with the base in the above rearrangement gave a 2:3 equilibrium mixture of (Va) and its epimer (Vb), m.p. 78–78.5°, v_{max} 1737 and 1709 cm.⁻¹, o.r.d. $[\phi]_{312}$ +6925, $[\phi]_{259}$ –9425, and the keto-esters were separated by silica gel column chromatography. Identity of (Va) and (Vb)

with authentic specimens3 derived from the methyl ester of epizizanoic acid (Id) was shown by a comparison of i.r., n.m.r., and o.r.d. On lithium aluminium hydride reduction followed by Jones oxidation, (Vb) afforded the ketocarboxylic acid (Vc), whose sodium salt was treated with a large excess of methylenetriphenylphosphorane in dimethyl sulphoxide at 58° for several days, giving an unsaturated carboxylic acid, indistinguishable from epizizanoic acid (Id) by a comparison of the i.r. spectra, in approximately 10% yield.

Transformation of epizizanoic acid into zizanoic acid (Ic), khusimol (Ib), and zizaene (Ia) has been reported.^{2,3}

We thank Miss R. Sakuma for the o.r.d. measurements.

(Received, September 15th, 1969; Com. 1394.)

- ¹ R. Sakuma and A. Yoshikoshi, Chem. Comm., 1968, 41.
- ² F. Kido, H. Uda, and A. Yoshikoshi, *Tetrahedron Letters*, 1967, 2815; 1968, 1247.
 ³ N. Hanayama, F. Kido, R. Sakuma, H. Uda, and A. Yoshikoshi, *Tetrahedron Letters*, 1968, 6099.
- (+)-Camphenecarboxylic acid (J. Houben and E. Pfankuch, Annalen, 1931, 483, 271) esterified with diazomethane.
- ⁶ K. E. Pfitzner and J. G. Moffatt, J. Amer. Chem. Soc., 1963, 85, 3027.
 ⁶ W. Nagata, S. Hirai, H. Itazaki, and K. Takeda, J. Org. Chem., 1968, 30, 2304.