The ${}^{3}A_{2}$ State of Thiophosgene

By D. C. MOULE* and C. R. SUBRAMANIAM

(Department of Chemistry, Brock University, St. Catharines, Ontario, Canada)

Summary A band at 5621.1 Å in the absorption spectrum of thiophosgene has been shown to be due to a transition originating from the ground vibronic state.

Thiophosgene exhibits an absorption spectrum in the visible region from 6000 Å to lower wavelengths which has been attributed to an $\pi^* \leftarrow n$ transition in the thiocarbonyl

group.^{1,2} The electronically forbidden ${}^{1}A_{2} \leftarrow {}^{1}A_{1}$ singlet transition with the origin at 5340 Å, has been analysed in detail by Brand *et al.*³ These authors assigned five out of the six fundamental frequencies in the ${}^{1}A_{2}$ state of CSCl₂ and established that the structure was pyramidal with an out-of-plane angle of 32°.

In the region of the thiophosgene singlet origin, a number

of bands of somewhat broader contour were observed which did not fit into the singlet band pattern. At pressure-paths ranging up to 6 m-atm., it was possible to identify these bands out to 5953 Å. This system is assigned to the spinforbidden ${}^{3}A_{2} \leftarrow {}^{1}A_{1}$ transition. A band at 5621.1 Å

A similar potential function was used to describe v_4 for the ${}^{1}A_{2}$ state.

$$V(Z_4)/\text{cm.}^{-1} = 76.18 Z^2 + (437900.0/55.0 + Z^2)$$

The potential barriers opposing planarity are calculated

	$^{1}A_{1}$ (ground state)		$^{1}A_{2}$ (excited state) ^b		$^{3}A_{\circ}$ (excited state		
	³⁵ Cl ₂ CS	85Cl37ClCS	³⁵ Cl ₂ ČS	35Cl37ClCS	35Cl2CS	a (*)	35Cl37ClCS
$v_1(a_1)$	1139.0	1138-8	907.4	906.8		987-8?	
$v_2(a_1)$	$503 \cdot 5$	499·4	480·0	476.7		474.27	
$v_3(a_1)$	288.5ª	285·8ª	245.0	243.5	247.35		246.70
$v_A(b_1) v_A = 1$	471·0	470.7	0.4.	0.4.		0.24	
$v_{\mathbf{A}} = 2$	941.9	941·3	$279 \cdot 6$	278·4	298.11		297.05
$v_A = 3$	1412.7	1411.7	$292 \cdot 5$	291.0	$302 \cdot 87$		301.91
$v_A = 4$	1883-6	1882-1	447·0°	445·2°	536·07°		534·19°
$v_A = 5$			586.9	584·3	600.87		598.82
$v_{4} = 6$						706.09	
$v_5(b_2)$	818						
$v_6(b_2)$	$\approx \nu_3^a$			· · · · ·			

TABLE 1. Vibration wavenumbers of thiophosgene (in cm.⁻¹)

 v_{3} and v_{6} are observed as two separate peaks in the condensed-phase i.r. spectrum of thiophosgene at liquid-nitrogen temperatures at 294 and 305 cm.⁻¹, respectively.

^b Data taken from ref. 3. ^c Not corrected for Fermi resonance.

provided the key to the vibrational analysis. A temperature study showed that the transition responsible for this band originated from the ground vibronic state. Under a resolution of 150,000 the band displayed a 35,37 chlorine isotope effect of 0.65 cm.-1 and an inversion doubling splitting of 5.0 cm.⁻¹. Thus, it could be assigned to 4_0^2 . Most of the triplet bands were fitted into a vibrational scheme involving quanta of ν'_1 , ν'_2 , ν'_3 , and ν'_4 which originated from a band at 5716.9 Å which was taken to be the electronic origin. Unlike the singlet spectrum, transitions from ν_3'' and $\nu_1'',$ are observed. It was possible to follow the assignment of the triplet system up to 1000 cm.⁻¹ to the blue of the origin, after which the more intense singlet system took over. Table 1 gives the vibrational frequencies of thiophospene in the ${}^{1}A_{1}$ ground state and the ${}^{1}A_{2}$ and ${}^{3}A_{2}$ excited states. Table 2 gives the calculated energy levels for the v'_4 manifold of 3A_2 thiophosgene obtained from a quadratic potential perturbed by a Lorentzian barrier term

$$V(Z_4)/\text{cm.}^{-1} = 74.83 Z^2 + (445100.0/54.2 + Z^2)$$

- ¹ L. Burnelle, Acad. Roy. Belg., Classe Sci., Mem., 1958, 30, No. 7.
 ² H. L. McMurry, J. Chem. Phys., 1941, 9, 231.
 ³ J. C. D. Brand, J. H. Callomon, D. C. Moule, J. Tyrrell, and T. H. Goodwin, Trans. Faraday Soc., 1965, 61, 2365.
 ⁴ J. C. D. Brand, J. Chem. Soc., 1956, 858; G. W. Robinson and V. E. Di Giorgio, Canad. J. Chem., 1958, 36, 31; J. Chem. Phys., 1959, 31, 1678; W. T. Raynes, *ibid.*, 1966, 44, 2755.

TABLE 2

Observed and calculated levels of the ν_4 manifold of 8A_2 and 1A_2 of $CS^{35}Cl_2$ (cm.^-1)

			1,	4,	³ A ,		
			Obs.	Calc.	Obs.	Calc.	
v = 0	••		0.0	0.0	0.0	0.0	
v = 1	••		0.4	0.42	$0 \cdot 2$	0.13	
v=2	••		279.6	279.58	298.1	297.60	
v = 3	••		292.5	293.53	$302 \cdot 9$	302.88	
v = 4	••	••	447.0	484.96	536·1ª	530.22	
v = 5	••		586.9	578.00	600-9	587.53	
v = 6	••	••			706-1	747.19	

^a Uncorrected for Fermi resonance.

to be 598 and 717 cm.⁻¹ in the ${}^{1}A_{2}$ and ${}^{3}A_{2}$ states, respectively. Although the differences in the barrier heights between the singlet and the triplet (n, π^*) state is less marked than in the case of formaldehyde,⁴ the structural change accompanying the changes in electron spin in thiophosgene is similar.

(Received, August 11th, 1969; Com. 1237.)