## The Mechanism of Catalysed Isomerization of Tetragonal Planar Complexes

By PAUL HAAKE\* and RICHARD M. PFEIFFER

## (Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut, 06457)

Summary The kinetics, activation parameters, solvent effects, and catalytic activities in the isomerization of cis-[Pt(Bu<sup>n</sup><sub>3</sub>P)<sub>2</sub>Cl<sub>2</sub>] indicate that the mechanism does not involve consecutive displacements; pseudorotation of a pentaco-ordinate intermediate should be considered.

THE cis-trans-isomerization of tetragonal planar complexes



is an interesting topological conversion which is known to occur both photochemically<sup>1</sup> and thermally.<sup>2</sup> The photochemical process appears to proceed via a tetrahedral state.<sup>1,3</sup> The equilibrium studies of the thermal process<sup>2</sup> in benzene solution indicated trans predominance at equilibrium due to an increase in entropy over the cisisomer in complexes with X = halogen and A = phosphine, stibine, or arsine. These thermal isomerizations were interpreted by a mechanism involving consecutive displacements:4

$$cis$$
-PtA<sub>2</sub>X<sub>2</sub> + A  $\rightarrow$  [PtA<sub>3</sub>X]+X<sup>-</sup>  $\rightarrow$  trans-PtA<sub>2</sub>X<sub>2</sub> + A.

A displacement mechanism has also been suggested for isomerization of palladium(II) complexes.<sup>5</sup>

We report here the first kinetic studies† of thermal, catalysed isomerization of platinum(11) complexes. Our results indicate that new ideas concerning the mechanism are required. In the isomerization of (I;  $A = Bun_3P$ , X = Cl) in cyclohexane, there is rapid isomerization in the presence of added Bun<sub>3</sub>P, but in the absence of added Bun<sub>3</sub>P isomerization is immeasurably slow. Isomerization is first order in both cis-complex and  $\operatorname{Bun}_3P$ ; at 25°,  $k_2 = 4 \cdot 49 \, \times \, 10 \; {\rm M}^{-1} \; \, {\rm sec.}^{-1}$  (there is no solvent path<sup>6</sup>),  $\Delta G^{\ddagger} = 13.9$  kcal./mole,  $\Delta H^{\ddagger} = 2.9$  kcal./mole, and  $\Delta S^{\ddagger} =$ -36.9 eu. The spectrum of the reaction mixture after 10 half-lives is identical to a spectrum of the trans-isomer indicating >99% trans-isomer at equilibrium. A good isosbestic point at 232 nm indicates that only isomerization is experimentally important.

The displacement mechanism requires formation of  $[PtA_{3}X]^{+}X^{-}$  as an intermediate, and, therefore, solvents of higher polarity might be expected to accelerate isomerization. However, we find that the rate of isomerization is significantly reduced if small amounts of polar solvents, e.g., CHCl<sub>3</sub>, MeCN, or Et<sub>2</sub>O are added to the cyclohexane used as solvent in our experiments. In contrast, the rates of displacement reactions of similar platinum(II) compounds increase in more polar solvents.<sup>7</sup> Also, the magnitude of the rate constant and the activation parameters observed here appear inconsistent with known data for displacement at platinum(11).<sup>8</sup> It therefore appears that a mechanism involving consecutive displacements is not a likely explanation for these platinum(II) isomerizations.

An alternative mechanism for isomerization involves pseudorotation of a pentaco-ordinate intermediate. Association  $(PtA_2X_2 + A \stackrel{\rightarrow}{\leftarrow} PtA_3X_2)$  would explain the  $\Delta S^{\ddagger}$  barrier which we observe. By pseudorotations, the X-Pt-X angle of 90° in the cis-isomer could expand so that dissociation of PtA<sub>3</sub>X<sub>2</sub> could produce trans-PtA<sub>2</sub>X<sub>2</sub>.

Holmes has estimated the barrier to pseudorotation of SbCl<sub>5</sub> to be accessible at room temperature.<sup>9</sup> According to the selection rules for isomerization of metal complexes formulated by Eaton,<sup>10</sup> pseudorotation of a trigonal bipyramidal  $d^8$  species is thermally favoured. We are now testing this hypothesis for isomerization more extensively.

(Received, July 21st, 1969; Com. 1090.)

† Rates were evaluated by spectrophotometry. At 265 nm, the *trans*-isomer has  $\epsilon_{max}$  9850 and the *cis*-isomer  $\epsilon_{max}$  1990.

- P. Haake and T. A. Hylton, J. Amer. Chem. Soc., 1962, 84, 3774.
   J. Chatt and R. G. Wilkins, J. Chem. Soc., 1952, 273, 4300; 1953, 70; 1956, 525.
   P. Haake and S. H. Mastin, unpublished results.
   F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 1st edn., Wiley, New York, 1958, pp. 249-254; see also <sup>4</sup> F. Basolo and R. G. Fearson, *Incommune 1*, 1969, 91, 312.
  <sup>5</sup> L. Cattalini and M. Martelli, J. Amer. Chem. Soc., 1969, 91, 312.
  <sup>6</sup> H. B. Gray and C. H. Langford, "Ligand Substitution Processes," Benjamin, New York, 1965.
  <sup>7</sup> U. Belluco, M. Martelli, and A. Orio, Inorg. Chem., 1966, 5, 582.
  <sup>8</sup> U. Belluco, M. Graziani, and P. Rigo, Inorg. Chem., 1966, 5, 1123.
  <sup>9</sup> D. B. Helmes and R. M. Deiters. Inorg. Chem., 1968, 7, 2229.

  - <sup>10</sup> D. R. Eaton, J. Amer. Chem. Soc., 1968, 90, 4272.