Chloronitrosylbis(triphenylphosphine)ruthenium(0): a Ruthenium Analogue of Vaska's Compound

By M. H. B. Stiddard* and R. E. Townsend (Chemistry Department, University College, 20 Gordon Street, London, W.C.1)

Summary The ruthenium complex RuNO(Ph₃P)₂Cl has been synthesised and some of its reactions have been investigated.

Of all known oxidative-addition reactions, none have received more attention than those involving the iridium(I) complex IrCO(Ph₃P)₂Cl (frequently referred to as Vaska's compound). According to the well authenticated formalism in carbonyl chemistry of replacing a CO group by NO+, it follows that a structurally analogous d8 complex of ruthenium(0), RuNO(Ph₂P)₂Cl should exist and undergo a range of oxidative additions.

Emerald-green crystals of this material may be prepared by reduction of the complex RuNO(Ph₃P)₂Cl₃¹ with zinc dust in boiling benzene. The product reacts extremely readily

with oxygen to give the adduct RuNO(Ph₃P)₂O₂Cl, recently described by Laing and Roper.² This latter adduct reacts further with sulphur dioxide to give the orange sulphatocomplex RuNO(Ph₃P)₂SO₄Cl, which may be obtained also by reaction of oxygen with a solution of the bright red sulphur dioxide adduct RuNO(Ph3P)2SO2Cl. Reaction of RuNO(Ph₃P)₂Cl with carbon monoxide yields the expected product RuNO(Ph₃P)₂COCl.²

A solution of RuNO(Ph₃P)₂Cl in benzene absorbs hydrogen slowly, although the expected dihydride has not been isolated. However, a number of other oxidative addition products formed by reaction, for example, with CH₃I, HCl, Cl₂, Br₂, I₂, HgCl₂, and HgBr₂ may be isolated readily in a pure state.

(Received, September 30th, 1969; Com. 1482.)

M. B. Fairy and R. J. Irving, J. Chem. Soc. (A), 1966, 475.
K. R. Laing and W. R. Roper, Chem. Comm., 1968, 1556.