7

Cationic Ruthenium Ammine Complexes of Cyanotrihydroborate and of Hydrogen Cyanide

By Peter C. Ford

(Department of Chemistry, University of California, Santa Barbara, California 93106)

Summary The synthesis and properties of the cationic complex cyanotrihydroboratopenta-ammineruthenium-(II), $[Ru(NH_3)_5(BH_3CN)]^+$, acid hydrolysis of which leads to a species identified spectroscopically as the N-coordinated hydrogen cyanide complex $[Ru(NH_3)_5(HCN)]^{2+}$ are reported.

RECENT reports¹⁻³ have discussed the possible ligand properties of the cyanotrihydroborate ion, BH_3CN^- . In the present work, this ion, isoelectronic with acetonitrile, was used to synthesise the cationic complexes $[Ru(NH_3)_5-(BH_3CN)]^+$ and $[Ru(NH_3)_5(BH_3CN)]^{2+}$, both moderately stable in aqueous solution. The co-ordinated cyanotrihydroborate of each hydrolyses in acidic solution releasing hydrogen and leading, in the case of the former ion, to an isolable ruthenium(II)-hydrogen cyanide complex. The reaction under argon between NaBH₃CN and $[Ru(NH_3)_5H_2O]^{2+}$ {prepared by Zn(Hg) reduction of $[Ru(NH_3)_5Cl][CF_3CO_2]_2$ in neutral aqueous solution } gives a yellow-green solution. Sodium bromide causes precipitation of a yellow-green solid (I) which analyses (C,H,N) correctly for $[Ru(NH_3)_5(BH_3CN)]Br$ and has an i.r. spectrum analogous to that of the penta-ammineruthenium(11) complex of acetonitrile⁴ (Table). When an aqueous solution of Br⁻ precipitates a compound (II) which displays an i.r. spectrum analogous to that⁴ of penta-ammine-(acetonitrile)ruthenium(11) (Table).

The similarity of certain ligand properties of CH_3CN and BH_3CN^- is illustrated by the $\nu(CN)$ increases for the Ru^{III} derivatives and the $\nu(CN)$ decreases for the corresponding Ru^{II} derivatives. Increased nitrile stretching frequencies are typical for $M-N\equiv C-R$ type co-ordination to most metal

ions,⁵ including Ru^{III},⁴ and parallel the observations for the BH_3CN^- complexes of Cu^I, Ag^I, and Ni^{II.3} The v(CN) decreases on co-ordination of either BH₃CN⁻ or CH₃CN to

frequencies expected for RuII (Table) and does not display the BH₃ frequencies (ca. 2340 cm⁻¹) observed for (I) and (II). In aqueous solution, (III) was stable only at very low

I.r. spectral data $(cm^{-1})^a$						
Complex				ν(CN)	δ(NH ₃)sym	$\rho(\mathrm{NH}_3)$
NaBH _a CN	••		••	2180s		
$[Ru(NH_3)_5(BH_3CN)]Br$	••			2170s	1253s	745s,br
$[Ru(NH_3)(BH_3CN)]Br_2$	••	••	••	2206s	1315s	805s,br
CH ₃ CN			••	2254s ^b		
$[\mathrm{Ru}(\mathrm{NH}_3)_5(\mathrm{CH}_3\mathrm{CN})][\mathrm{BF}_4]_2$	••	••		2239s ^ø	1258sc	773s,br°
$[\mathrm{Ru}(\mathrm{NH}_3)_5(\mathrm{CH}_3\mathrm{CN})][\mathrm{ClO}_4]_3$		••		2286m ^b	1312sc	821s,brc
HCN(gas)	••	••	••	$2097s^{d}$		
$[\mathrm{Ru}(\mathrm{NH}_3)_5(\mathrm{HCN})][\mathrm{ClO}_4]_2$	••	••	••	1960vs,br	1268s	765s,br

^a All spectra taken on Perkin-Elmer 225 spectrometer, in KBr disc, except where noted.

^b Ref. 4.
^c R. E. Clarke and P. C. Ford, unpublished data.

^d K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," Wiley, New York, 1963, p. 80.

 $\operatorname{Ru}(\operatorname{NH}_3)_5^{2+}$ are attributable to the π -backbonding noted for other Ru^{II} organonitrile complexes.^{4,6} The relatively low frequencies of $\delta(NH_3)$ (symmetrical deformation) and $\rho(\rm NH_3)$ (rocking) for the Ru^{II} ammines and the higher values for the RuIII ammines are characteristic of the ruthenium oxidation states.6

The u.v. spectra of the RuII compounds are also similar, with λ_{\max} 224 nm (log ϵ 4·1) for aqueous (I) compared with $\lambda_{\max} 229 \text{ nm} (\log \epsilon 4.2)^4 \text{ for aqueous } [\text{Ru}(\text{NH}_3)_5(\text{CH}_3\text{CN})]^{2+}.$ The small shift of this absorption to shorter wavelength for (I) is consistent with the assignment of both bands as metalto-ligand charge transfers (MLCT), as BH₃CN⁻ should be less electronegative than CH₃CN.

Dissolution of [Ru(NH₃)₅(BH₃CN)]Br in 3M-HCl leads to immediate formation of gas, presumably hydrogen, the product of borohydride hydrolysis. The u.v. spectrum of the product solution shows a new band at λ_{max} 241 nm with an intensity (log ϵ ca. 4) comparable with that of the [Ru(NH₃)₅(BH₃CN)]⁺ MLCT band at 224 nm. Addition of sodium perchlorate precipitates (in high yield) a greenishwhite solid (III), which displays an intense i.r. band (1960 cm⁻¹) in the triple bond region and the $\delta(NH_3)$ and $\rho(NH_3)$

pH (e.g., 3M-HCl), and decomposed immediately and irreversibly to unidentified products when the pH was raised, decomposing in minutes even at pH ca. 1. The same i.r. and u.v. spectra have been observed⁷ for the product of the reaction between gaseous HCN and $[Ru(NH_3)_5(H_2O)]^{2+}$ in strongly acidic solution. A distinctly different species [e.g., v(CN) 2010s, $\delta(NH_3)$ sym 1265s, and $\rho(NH_3)$ 750m cm⁻¹] is the product of the reaction between NaCN and $[Ru(NH_3)_5(H_2O)^{2+}$ in neutral aqueous solution.⁷

The above i.r. data indicate that (III) is the hydrogen cyanide complex $[Ru(NH_3)_5(HCN)][ClO_4]^2$ co-ordinated at the nitrile nitrogen. In support, the u.v. band (241 nm) observed for (III) parallels MLCT bands observed for Ru(NH₃)₅²⁺ co-ordinated CH₃CN, BH₃CN⁻, and N₂,⁸ a fact which suggests similar structural types. The pH sensitivity in aqueous solution indicates that N-coordinated cyanide ion (M-N=C:) is an unfavourable configuration, and that the complex decomposes when the pH is high enough to generate this species.

I thank the Petroleum Research Fund for support.

(Received, October 12th, 1970; Com. 1754.)

- ¹ J. R. Berschied and K. F. Purcell, Inorg. Chem., 1970, 9, 624.
- ² R. C. Wade, E. A. Sullivan, J. R. Berschied, and K. F. Purcell, *Inorg. Chem.*, 1970, 9, 2146.
 ³ S. J. Lippard and P. S. Welcker, *Chem. Comm.*, 1970, 515.
- ⁴ R. E. Clarke and P. C. Ford, Inorg. Chem., 1970, 9, 227.
- ⁵ R. A. Walton, Quart. Rev., 1965, 19, 126.
- ⁶ P. C. Ford, Coordination Chem. Rev., 1970, 5, 75.
- ⁷ R. E. Clarke, unpublished observations.
 ⁸ I. M. Treitel, M. T. Flood, R. E. Marsh, and H. B. Gray, J. Amer. Chem. Soc., 1969, 91, 6512.