Crystal Structure and Bonding in the Dinuclear Complexes $(\pi-C_5H_5)_2W(SPh)_2M(CO)_4$ (M = Cr, Mo, and W) and $(\pi-C_5H_5)_2Ti(SMe)_2Mo(CO)_4$

By T. S. CAMERON, C. K. PROUT,* and G. V. REES

(Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 3QS)

M. L. H. GREEN

(Inorganic Chemistry Laboratory, South Parks Road, Oxford)

K. K. JOSHI, G. R. DAVIES, and B. T. KILBOURN

(Imperial Chemical Industries Limited, Petrochemical and Polymer Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire)

and P. S. BRATERMAN* and V. A. WILSON

(Department of Chemistry, The University, Glasgow, W.2)

Summary The crystal structures of the title compounds (I, IIa) provide evidence for metal-metal bonding specific to the titanium-molybdenum complex: spectroscopic data support this conclusion.

. . .

protons in (II) relative to the free ligand would indicate a paradoxical increase in electron density on Ti. Compounds

Molecular dimensions for π -(C₅H₅)₂M²(SR)₂M¹(CO)₄

THE crystal structures of the title compounds have been
determined. All four complexes have similar geometry,
with a planar $M^1(S)_2M^2$ ring. There are, however, significant
differences in the dimensions of these rings.
Compounds (I) are isomorphous, with pear equal metal

. . . .

Compounds (I) are isomorphous, with near-equal metalmetal distances of *ca.* 400 pm, and M¹SM² angles around 105°. In (IIa),¹ the metal-metal distance is shorter (332 pm) and the M¹SM² angle is acute. Acute bridging angles are also found in Et₃P(OC)₃Mo(PMe₂)₂Mo(CO)₃PEt₃² and [Fe(NO)₂I]₂,³ and are generally ascribed to metal-metal bonding.

The spectra of the Cr,W analogues of (II) are similar to those of (IIa) and (IIb), but the conformation of the solids is uncertain for R = Ph.

			W-W	W–Mo	W–Cr	Ti-Moª
M ² M ¹ (pm)			401	406	393	332
M²-S			248	250	249	246
S-M ¹		••	258	262	249	256
$C_5H_5-M^2$		• •	199	200	199	207
S–S	••	••	294	294	293	377
∠C ₅ H ₅ -M ¹	-C ₅ H ₅	••	$132 \cdot 5^{\circ}$	134.5°	131·5°	128·7°
∕SM²S	••	••	72·8°	$72 \cdot 6^{\circ}$	72·1°	99·9°
∕S–M¹–S		••	69·4°	69.0°	72·0°	94∙6°
∑M ¹ -S-M ²	••	••	$104 \cdot 9^{\circ}$	105·0°	$104 \cdot 2^{\circ}$	82·8°

^a From ref. 1.

(II) show an intense low-energy charge transfer bond overlapping but distinguishable from the lowest energy

TABLE 2

Selected spectroscopic data

Compound				v(CO) (cm ⁻¹)	Low-energy electronic transitions (cm^{-1}) $(\log \epsilon)$		
(Ib)	••	••	••	2010, 1898, 1870, 1850, 1842sh, 1817ª			
(IIa) ^b	••	••	••	2071, 2016, 1918, 1903	$18,800(3.6)$ $16,500(3.7)^{\circ}$		
(II) ^b MeSC ₂ F	 LSMeN	 10(CO)	, a	2018, 1930, 1912, 1899 2030, 1919, 1905, 1868	18,600(3.6) 16,000(3.7)° None		
PhSC ₂ H				2027, 1905br, 1868	None		
$(\pi - C_5 \overline{H})$	J, Ti(SI	Me), ^b	• • •		18,800(3.6)		
$(\pi - C_5 H_1)$,)₂Ti(Sl	Ph)2 ^b	••		18,600(3.6)		

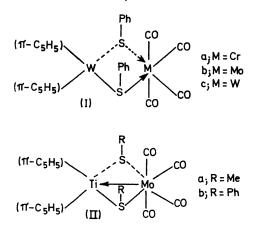
^a Nujol mull.⁴

^b In ĆHCl₃.⁵

^c Resolved component peaks.⁵

^d See H. C. E. Mannerskantz and G. Wilkinson, J. Chem. Soc., 1962, 4454.

Spectroscopic data for compounds (IIa)⁴ and (IIb)⁵ support these conclusions, and demonstrate the nature of the bond (Tables 2,3). The similarity in properties between (IIa) and (IIb) shows that the difference between (IIa) and compounds (I) is not due to the change in the organothiobridge, but rather to the replacement of W by Ti. We attribute the low CO stretching frequencies in compounds (I), as compared with bis(organothio)metal tetracarbonyls, to the low electronegativity of the π -(C₅H₅)₂W(SPh)₂ group, acting as a normal bidentate ligand. In (II), however, the frequencies are anomalously higher. Furthermore, the increase in τ values of the cyclopentadienyl


TABLE 3

¹H n.m.r. data (τ values in chlorobenzene)⁵

				$C_{5}H_{5}$	Me
(IIa)				4.80a	7.48
(IIb)	••	••	••	4.82 ^b	
$(\pi - C_5 H)$	(5)2Ti(SMe)	2 • •	• •	4.24	7.43
$(\pi - C_5 H)$	(5)2Ti(SPh)	2 • •	••	4.24	
lime-avera	ged spectru	ım (+	50°).		

^b Time-averaged spectrum $(+25^{\circ})$.

bond in $(\pi$ -C₅H₅)₂Ti(SR)₂, and responsible for the apparent

bathochromic shift⁶ in this bond. Compounds (I) are yellow to red.

These data indicate that the two electrons present in (I), but absent in (II), and formally placed on the cyclopentadienyl metal, occupy an orbital with some metal-metal antibonding character. This would appear, from the M¹SM² angles, to correspond to Alcock's⁷ ψ_{y} orbital, rather than to the more centrally localised orbital ψ_{o} of Ballhausen and Dahl.⁸ In the compounds (II), these electrons being absent, overlap of the carbonyl metal $d(x^2 - y^2)$ with the vacated orbital on Ti leads to a relative attraction between the metals and to the movement of charge indicated by the spectra.

We thank the S.R.C. for a research fellowship to T.S.C.

(Received, November 11th, 1970; Com. 1950.)

- ¹G. R. Davies and B. T. Kilbourn, J. Chem. Soc. (A), in the press.
 ² R. H. B. Mais, P. G. Owston, and D. T. Thompson, J. Chem. Soc. (A), 1967, 1735.
 ³ L. F. Dahl, E. R. de Gil, and R. D. Feltham, J. Amer. Chem. Soc., 1969, 91, 1653.
 ⁴ A. R. Dias and M. L. H. Green, Rev. Port. Quim., 1969, 11, 61.
 ⁵ D. C. Dataman, M. A. Wilson, and V. V. Lacki, J. Chem. Soc. (A), in the press.
- ⁵ P. S. Braterman, V. A. Wilson, and K. K. Joshi, *J. Chem. Soc.* (A), in the press.
 ⁶ H. Köpf and K. H. Räthlein, Angew. Chem. Internat. Edn., 1969, 8, 980.
 ⁷ N. W. Alcock, *J. Chem. Soc.* (A), 1967, 2001.

- ⁸ C. J. Ballhausen and J. P. Dahl, Acta Chem. Scand., 1961, 15, 1333.