
Kinetics of Ternary Complex Formation Involving Cobalt(11): an Enzyme Model System

By M. A. COBB and D. N. HAGUE*

(University Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent)

Summary The rate constants for the formation and dissociation of ternary complexes of Co^{II} with pyridine-2-azo-*p*-dimethylaniline in water follow closely the trends observed for comparable Zn^{II} complexes.

COBALT(II) can frequently be exchanged in metalloenzymes for the natural co-factor zinc and it has been shown in some cases¹ and suggested in others² that the metal acts as a bridge between the enzyme and the substrate and/or product. This mechanism necessitates complex formation

between a ligand and a metal ion which is already complexed. The reason why zinc can often be replaced by Co^{II} but not by certain other bivalent metal ions, such as Ni^{II} , is not known, though it has been suggested³ that one important factor is the ability of the co-ordinating ligands readily to assume different geometries around the central metal ion if the latter is Zn^{II} or Co^{II} . To help towards an understanding of the effect of such bound ligands on the reactivity of metal ions we are studying reactions of type (1),

$$L_1M + L_2 \stackrel{k_f}{\approx} L_1ML_2 \quad \dots \quad \dots \quad (1)$$

where L_1 is a firmly bound multidentate ligand, and M = metal.

Very little systematic work of this type has been published. The effect of L_1 on the reactivity of Mg^{2+} is comparatively minor,⁴ even with large, highly charged ligands L. With Mn^{2+} , which is also electronically symmetrical, the effect also seems to be small in many cases.⁵ For Ni²⁺, Margerum *et al.* have shown⁶ that k_f and k_d both increase markedly as the water molecules in the inner co-ordination sphere of the metal ion are replaced by groups which bind through nitrogen, and that the rate constants seem to be proportional to the number of nitrogen atoms bound. Charge, as such, has comparatively little effect.

We have used the temperature-jump relaxation method to study the kinetics of formation and dissociation of complexes between Co^{II} species and the bidentate ligand pyridine-2-azo-*p*-dimethylaniline, (I). This study forms an extension of a similar one with Zn^{II} species⁷ and we have chosen the ligands L_1 so that a direct comparison is possible between the two systems. Our results are summarized in the Figure, together with those of Margerum *et al.* on the reaction of Ni^{II} species with NH₃. In all cases the conditions could be chosen such that a simple relaxation effect was observed, and the variation of relaxation time with concentration agreed very closely with that predicted for reaction (1). Preliminary temperature-variation studies with several systems confirmed that the reactions followed this scheme cleanly. The values of k_f given in the Figure have been adjusted^{4,5,7} for the reduced number of water molecules available for substitution in ML₁ as compared with M²⁺. [It was only possible to obtain lower limits for

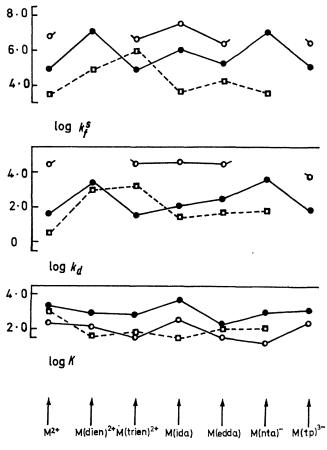


FIGURE. Rate and equilibrium data for ternary complexes of Co^{II} , Zn^{II} , and Ni^{II} . Equilibrium (K) and rate constants for formation (k_1^8) and dissociation (k_d) of ternary complexes of Co^{I+} (\odot) and Zn^{2+} (\bigcirc) with (I) and of Ni^{2+} (\square) with NH_a at 25°. Units of k_1^8 are l mole⁻¹ s⁻¹ and of k_d , s⁻¹. The firmly bound ligands are diethylenetriamine (dien), triethylenetetramine (trien), iminodiacetate (ida), NN'-ethylenediaminetetra-acetate (edda), nitrilotriacetate (nta), and polytriphosphate (tp). Data for zinc are taken from ref. 7 and for nickel from ref. 6 (with suitable adjustments for differences in temperature, where necessary).

the rate constants for the $Zn(dien)^{2+}$ (dien = diethylenetriamine) and $Zn(nta)^-$ (nta = nitrilotriacetate) systems.]

The pattern of 1:1 complex formation involving labile metal ions has become well-established in recent years.⁸ k_f depends primarily on the nature of the metal and, in particular, reactions between a given metal and most ligands of the same charge type have approximately the same value of k_f ; the variation in equilibrium constant is usually reflected in differences in k_d . There is evidence

that NH₃ and (I) are "normal" ligands,⁷⁻⁹ so the values of k_{f} , at least for the L₁M species which contain two or more replaceable cis-water molecules, may reasonably be compared; the k_d and K values for Co^{II} and Zn^{II} reflect the chelating nature of (I), however.

There is a remarkable similarity between the patterns for Co^{II} and Zn^{II}, and the contrast between these patterns and the one for Ni^{II}. The rate constants show a greater variation than the equilibrium constants for all three metals. As for Mg^{II}, Mn^{II}, and Ni^{II}, charge does not appear to be the dominant factor affecting the rates. It is also unlikely that crystal field effects are important for Co^{II} since they would be absent for Zn^{II} . It is possible that the relative positions of the non-replaceable groups around the metal ion are important in these reactions with (I), and we have further evidence¹⁰ that the rearrangement of the nonreplaceable groups necessary to accommodate the incoming bidentate ligand can considerably reduce k_f . Activation parameters are being measured for these and similar systems in the hope that they will reflect such factors.

We thank Imperial Chemical Industries, Limited (Heavy Organic Chemicals Division) for a Research Studentship for M.A.C., and the S.R.C. for a grant for the purchase of the temperature-jump apparatus.

(Received, November 12th, 1970; Com. 1954.)

¹ E.g. M. E. Riepe and J. H. Wang, J. Amer. Chem. Soc., 1967, 89, 4229; J. Biol. Chem., 1968, 243, 2779.

² E.g. R. T. Simpson and B. L. Vallee, *Biochemistry*, 1968, 7, 4343. ³ E.g. B. L. Vallee, and R. J. P. Williams, *Proc. Nat. Acad. Sci. U.S.A.*, 1968, 59, 498.

⁴ D. N. Hague and M. Eigen, Trans. Faraday Soc., 1966, 62, 1236.

⁵ D. N. Hague and M. S. Zetter, Trans. Faraday Soc., 1970, 66, 1176.

⁶ D. W. Margerum and H. M. Rosen, J. Amer. Chem. Soc., 1967, 89, 1088; J. P. Jones, E. J. Billo, and D. W. Margerum, ibid., 1970, 92, 1875.

⁷G. R. Cayley and D. N. Hague, Trans. Faraday Soc., in the press.

⁸ E. g. M. Eigen and R. G. Wilkins, "Mechanisms of Inorganic Reactions," ed. R. F. Gould, Advances in Chemistry Series, No. 49, Amer. Chem. Soc., Washington, D.C., 1965, p. 55; D. J. Hewkin and R. H. Prince, Coordination Chem. Rev., 1970, 5, 45.
⁹ D. B. Rorabacher, Inorg. Chem., 1966, 5, 1891.

¹⁰ M. A. Cobb and D. N. Hague, to be published.