Determination of Stability Constants by Gas-Liquid Chromatography for the π -Complexing of Aromatic Solvents and Monomers with a Nitroxide Radical

By L. BATT,* G. M. BURNETT, G. G. CAMERON, and J. CAMERON

(Department of Chemistry, The University, Meston Walk, Old Aberdeen, AB9 2UE)

Summary Stability constants have been determined by g.l.c. for the π -complexing of aromatic solvents and monomers with the t-butyl mesityl nitroxide radical over the temperature range 50–85°.

GAS CHROMATOGRAPHY has been used to determine stability constants (K_C) for a number of different kinds of equilibria. We have applied this technique to the solvent and monomer (X) interaction with a nitroxide radical (R•) over the temperature range 50—85°. We assume that a 1:1 complex is formed.

$$R \cdot + X \stackrel{K_c}{\longrightarrow} RX \cdot$$

 $R \cdot = t$ -butyl mesityl nitroxide;

X = benzene, chlorobenzene, bromobenzene; styrene, methyl methacrylate, methacrylonitrile, and methyl acrylate.

The apparent gas-chromatographic partition coefficient $K_{\rm R}$ is given by equation (A), where $C_{\rm R}$ is the concentration of the radical R, $K_{\rm R^0}$ is

$$K_{\rm R} = K_{\rm R^o} (1 + K_{\rm C} C_{\rm R}) \tag{A}$$

the partition coefficient of X between the gas-chromatographic solvent squalane and the gas phase [equation (B)]. The retention volume for

$$X_{(g)} \rightleftharpoons X_{(l)} \qquad K_{R^0}$$
 (B)

 $X(V_{\mathbf{B}})$ is related to $K_{\mathbf{R}^0}$ by equation (C), where $V_{\mathbf{L}}$ is the total

$$V_{\rm R} = K_{\rm R^0} \ V_{\rm L} \tag{C}$$

volume of squalane on the column. When $C_{\rm R} = 0$, $K_{\rm R} = K_{\rm R^0}$ and hence we may find $K_{\rm C}$ from equation (D).

$$\frac{V_{\rm R}}{V_{\rm R^0}} = 1 + K_{\rm C}C_{\rm R} \tag{D}$$

The apparatus was a Perkin Elmer G.L.C. employing a hydrogen flame ionisation detector, N_2 carrier gas, and 50 m capillary columns containing either squalane, or a solution

Thermodynamic data for π -complexation with t-butyl mesityl nitroxide at 60°

Solvent or monomer	(X)	$-\ln K_{\rm C}$	$-\Delta H^{\circ}$ kcal. mole ^{-1a}	$\begin{array}{c} -\Delta S^{\circ} \\ \text{Cal.} \\ \text{mole}^{-1} \\ \text{deg}^{-1a} \end{array}$	ΔG° kcal. mole ⁻¹⁸
Benzene	••	3.12	5.8	23.6	2.1
Chlorobenzene	••	2.36	$3 \cdot 5$	$15 \cdot 2$	1.6
Bromobenzene	••	1.94	$2 \cdot 2$	10.5	1.3
Styrene	••	$2 \cdot 12$	1.5	8.7	1.4
Methyl methacrylate	• •	2.44	4.4	18.1	1.6
Methyl acrylate	••	2.70	10.9	38.1	1.7
Methacrylonitrile	••	3.12	$7 \cdot 1$	27.6	2.1
* 1 cal. = $4 \cdot 184$ J.					

of R• in squalane. $1 \mu l$ of a 0.5% acetone solution of the solvents or monomers together with inert markers cyclohexane and n-nonane, was injected into a column *via* an

injection block heated to 200° and a stream splitter which reduced the volume finally going on to the column by two powers of ten.

The solution of equation (D) for K_{C} at various temperatures led to the usual thermodynamic parameters given in the Table. The bond energy of complex formation lies in the range 2-11 kcal mole⁻¹. This range is in accord with the value of 6.2 kcal mole-1 obtained by Buchachenko et al.² for the complexation of dianisyl nitroxide with benzene by other methods. In addition, this value is not far removed from the value obtained by us for benzene and t-butyl mesityl nitroxide, of 5.8 kcal mole⁻¹.

These results have some significance in connection with different rates of polymerisation as a function of solvent.

We are grateful to Professor J. H. Purnell (Swansea) for helpful discussions, and to Drs. A. R. Forrester and S. Hepburn (Aberdeen) for a sample of t-butyl mesityl nitroxide. J.C. thanks the S.R.C. for a maintenance grant.

(Received, November 9th, 1970; Com. 1934.)

¹ See: D. F. Cadogan and J. H. Purnell, J. Chem. Soc. (A), 1968, 2133.
² A. L. Buchachenko, O. P. Sukhanova, L. A. Kalashnikova, and M. B. Neiman, Kinetika i Kataliz, 1965, 6, 601; L. A. Kalashnikova, M. B. Neiman, and A. L. Buchachenko, Russ. J. Phys. Chem., 1968, 42, 598; L. A. Kalashnikova, A. L. Buchachenko, M. B. Neiman, and E. G. Rozantsev, ibid., 1969, 43, 31.