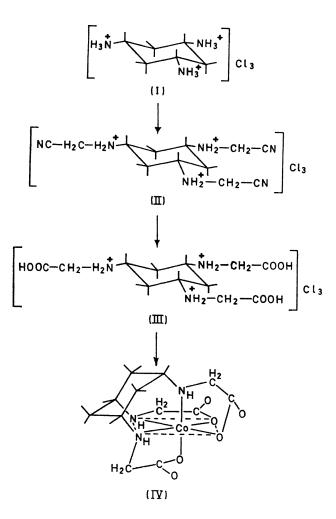
## The Synthesis of *cis,cis*-1,3,5-Triaminocyclohexane-*NN'N*"-triacetic Acid and Its Cobalt(III) Complex

By L. J. ZOMPA\* and J. M. SHINDLER

(Department of Chemistry, University of Massachusetts-Boston, Boston, Massachusetts 02116)


Summary The synthesis of a new stereospecific aminoacid cis,cis-1,3,5-triaminocyclohexane-NN'N''-triacetic acid and its cobalt(111) complex are reported.

cis,cis-1,3,5-TRIAMINOCYCLOHEXANE (cis,cis-tach) has recently been synthesized in good isomeric purity.<sup>1,2</sup> The restrictive tridentate stereochemistry of cis,cis-tach in metal complexes was previously demonstrated by i.r.<sup>3</sup> and

electronic<sup>1b</sup> spectral studies. Equilibrium studies<sup>4</sup> confirmed the uniquely tridentate property of the ligand when no evidence of protonated metal-ligand species was found. The synthesis of a stereoselective amino-acid derivative of *cis,cis*-tach, *cis,cis*-1,3,5-triaminocyclohexane-NN'N''-triacetic acid (*cis,cis*-tachta) is now reported.

A reaction mixture consisting of cis,cis-tach,3HCl,H<sub>2</sub>O (I) and sodium cyanide in 37% formalin was diluted with

methanol and saturated with HCl gas. Crystals of cis, cis-1,3,5-triaminocyclohexane-NN'N''-triacetonitrile trihydrochloride monohydrate (II) immediately precipitated. Hydrolysis of the nitrile in constant-boiling HCl gave cis, cis-tachta, 3HCl, 2H<sub>2</sub>O (III), m.p. 186° (dec).



The i.r. spectrum of cis, cis-tachta, 3HCl, 2H<sub>2</sub>O shows a band at 1740 cm<sup>-1</sup> (sharp doublet) which is assigned to

un-ionized carboxylate.<sup>5</sup> The high-field portion of the n.m.r. spectrum is consistent with those of other cis.cis-1,3,5-substituted cyclohexane derivatives<sup>6,7</sup> and exhibits a splitting pattern nearly identical with that of cis, cistach, 3HCl, H<sub>2</sub>O.<sup>18</sup> The spectra of *cis,cis*-tachta, 3HCl, 2H<sub>2</sub>O and cis, cis-tach, 3HCl, H<sub>2</sub>O are compared in the Table.

TABLE

| Assignment                         | <i>cis,cis</i> -<br>tach,3HCl,H <sub>2</sub> Oª | <i>cis,cis-</i><br>tachta, <b>3</b> HCl,2H <sub>2</sub> O |
|------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Axial methylene H                  | δ1·99 (q)                                       | δ 2·33 (q)                                                |
| Equitorial<br>methylene H          | δ 2·82 (d)                                      | δ 3·24 (d)                                                |
| Methine H                          | δ 3·86 (t)                                      | δ 4·11(t)                                                 |
| Methylene (glycyl )H               |                                                 | δ <b>4·63</b> (s)                                         |
| Solvent D <sub>2</sub> O, external | capillary (Si₄Me)                               |                                                           |

<sup>a</sup> The chemical shifts reported for cis,cis-tach,3HCl,H<sub>2</sub>O are ca.  $0.23 \delta$  upfield from those reported by Wentworth and Felton.<sup>18</sup> The first-order coupling constants which they report, however, are in agreement with those obtained in this study.

The cobalt(III) complex of cis, cis-tachta (IV) was prepared from the amino-acid hydrochloride and sodium tris(carbinato)cobaltate(III). The electronic spectrum of the red Co(tachta), 1.5H2O exhibits two symmetrical absorption maxima at 368 ( $\epsilon$  148) and 512 nm ( $\epsilon$  193) and is quite similar to that of the  $\beta$  (facial-N) isomer of tris(glycinato)cobalt(III).<sup>8</sup> The i.r. spectrum of Co(tachta), 1.5H<sub>o</sub>O shows a single absorption at 1639 cm<sup>-1</sup>, nearly the same frequency reported for the antisymmetric carboxylate stretching in  $\beta$ -tris(glycinato)cobalt(111).<sup>9</sup> It appears that all six donor groups of the ligand are co-ordinated to the central cobalt(III) ion.

The results of Gillum, Wentworth, and Childers<sup>10</sup> indicate an octahedral rather than trigonal-prismatic co-ordination in the present case. Further, we feel that the ligand here has sufficiently different  $\pi$ -electronic structure and is not so sterically constraining as in the case of certain Schiff base derivatives of cis, cis-tach<sup>11</sup> and similar ligands<sup>12</sup> where trigonal-prismatic co-ordination can be imposed. An octahedral coordination implies the existence of two optical isomers. These would have opposite chirality along the  $C_3$  axis.

(Received, November 5th, 1970; Com. 1935.)

<sup>1</sup> (a) R. A. D. Wentworth and J. J. Felten, *J. Amer. Chem. Soc.*, 1968, 90, 621; (b) R. A. D. Wentworth, *Inorg. Chem.*, 1968, 7, 1030. <sup>2</sup> H. Stetter, D. Theisen, and G. J. Steffens, *Chem. Ber.*, 1970, 103, 200. <sup>3</sup> F. L. Urbach, J. E. Sarneski, L. J. Turner, and D. H. Busch, *Inorg. Chem.*, 1968, 7, 2169.

- <sup>4</sup> R. F. Childers, R. A. D. Wentworth, and L. J. Zompa, *Inorg. Chem.*, in the press.
  <sup>5</sup> K. Nakamoto, "Infrared Spectra of Inorganic and Co-ordination Compounds," Wiley, New York, 1963, p. 206.
- <sup>6</sup> A. Segre, *Tetrahedron Letters*, 1964, 1001. <sup>7</sup> A. Segre and J. I. Musher, *J. Amer. Chem. Soc.*, 1967, **89**, 706.
- <sup>8</sup> F. Basolo, C. Ballhausen, and J. Bjerrum, Acta Chem. Scand., 1955, 9, 810.

- <sup>10</sup> K. Nakamoto, Y. Morimoto, and A. E. Martell, J. Amer. Chem. Soc., 1961, 83, 4528.
  <sup>10</sup> W. O. Gillum, R. A. D. Wentworth, and R. F. Childers, Inorg. Chem., 1970, 9, 1825.
  <sup>11</sup> W. O. Gillum, J. C. Hoffman, W. E. Streib, and R. A. D. Wentworth, Chem. Comm., 1969, 843.
  <sup>12</sup> E. B. Fleischer, A. E. Gebala, and P. A. Tasker, J. Amer. Chem. Soc., 1970, 92, 6365.