The Bonding of Aliphatic Dinitriles in Halogeno(dinitrile)tricarbonyl-manganese(I) and -rhenium(I) Complexes

By J. G. DUNN and D. A. EDWARDS*

(School of Chemistry and Chemical Engineering, Bath University of Technology, Bath, Somerset BA2 7AY)

Summary Spectroscopic evidence indicates that aliphatic dinitriles σ -bond in M(CO)₃(dinitrile)X complexes (M = Mn and Re; X = Cl, Br, and I) using one donor nitrogen atom only, and do not act as π -bonding chelates as previously suggested.

Aliphatic dinitriles normally act as σ -bonding bridging ligands in complexes using both nitrogen donor atoms. X-Ray crystallographic studies have shown such bonding to be present in, for example, SnCl₄·NC(CH₂)₃CN,¹ and AgClO₄·2NC(CH₂)₄CN.² However, evidence has been presented^{3,4} suggesting that dinitriles co-ordinate in a unique chelating manner through the two nitrile π -systems in a

series of $M(CO)_{3}(dinitrile)X$ compounds, (M = Mn and Re; X = Cl and Br). The results supporting such a formulation were: (i) the monomeric nature of $Mn(CO)_3[NC(CH_2)_2CN]X$ in sulpholane; (ii) the complexes did not have bands in the 2250-2350 cm⁻¹ region of the i.r. as would be expected for N-bonded nitriles; (iii) the $2100-1800 \text{ cm}^{-1}$ region of the i.r. consisted of four bands, the highest of which was assigned to π -bonded nitrile, the other three being carbonyl stretches, in agreement with C_s symmetry.

Whilst using these complexes, M(CO)₃[NC(CH₂)_xCN]X (M = Mn and Re; X = Cl, Br and I; x = 1, 2, and 3) as intermediates, we have obtained results, listed below, which cast doubt on the validity of such a formulation. (i) The i.r. spectrum of Mn(CO)₃[NC(CH₂)₂CN]Br in sulpholane was examined under nitrogen over 4 h. The $\nu(CO)$ band pattern and positions changed considerably indicating reaction with the solvent. (ii) Two weak bands were found

in the 2250-2350 cm⁻¹ region of the i.r. for all the complexes, the position of the higher frequency band (2300 + 5)cm⁻¹) being characteristic of an N-bonded nitrile group, the position of the lower band being very close to v(CN) of the unco-ordinated dinitrile. The weakness or even absence of v(CN) in the i.r. spectra of nitrile complexes has been reported before. Thus no v(CN) was apparent in the i.r. of ReCl₃(PPh₃)₂MeCN,⁵ but a single-crystal X-ray study⁶ showed the presence of a linear Re-N-C system. As further evidence of the presence of both N-bonded and unco-ordinated nitrile, the Raman spectrum of Re(CO)₃-[NC(CH₂)₂CN]Cl shows a very strong band at 2302 cm⁻¹ and a medium intensity band at 2277 cm^{-1} . (iii) Mull i.r. spectra of the manganese complexes show two sharp, strong bands above 2000 cm⁻¹ and one very broad, strong, band below 2000 cm⁻¹, e.g., Mn(CO)₃[NC(CH₂)₂CN]Br: 2072, 2046, and 1941 cm⁻¹. In acetonitrile the broad lowest frequency band is resolved into three bands giving a total of five bands in this region, e.g., $Mn(CO)_3[NC(CH_2)_2CN]Br$: 2066m, 2043s, 1975m, 1956s, 1935s cm⁻¹. Such solution spectra show no changes after 1 h and at least 80% of the original complex could be recovered by removal of the solvent.

We have also prepared the isotopic mixture $Mn(CO)_{5-x}$ $(C^{18}O)_x$ Br (x = 0-5),⁷ and from this Mn(CO)_{3-x}(C¹⁸O)_x- $[NC(CH_2)_2CN]Br (x = 0-3)$. Thirteen bands are found in the i.r. between 2100 and 1850 cm⁻¹ for this isotopically substituted complex. If the assignment⁴ for $Mn(CO)_3$ [NC- $(CH_2)_2CN$]Br of the highest frequency $\nu(CO)$ at 2043 cm⁻¹, with v(CN) at 2066 cm⁻¹, is correct, the increased complexity of the spectrum due to isotopic substitution will occur only below 2043 cm⁻¹. However, a new band of approximately equal intensity to that of the band at 2066 cm^{-1} is clearly evident at 2054 cm^{-1} . The 2066 cm^{-1} band must therefore also be assigned to a carbonyl stretching vibration and cannot be related to a π -bonded nitrile group.

The identification of five i.r. v(CO) bands $(2A_1 + 2B_1)$ $+ B_2$), N-bonded and unco-ordinated nitrile groups, and in some cases, e.g., Mn(CO)₃[NC(CH₂)₂CN]Cl:287, 278, and 237 cm⁻¹, three i.r. ν (M–X) bands $(A_1 + B_1 + B_2)$ is consistent with the dimeric structure (I), of C_{2v} symmetry, for these complexes. Chelating bidentate ligands, (B), such as 2,2'-bipyridyl, react with these compounds, cleaving the halogen bridges and liberating the dinitrile, to give M(CO)₃BX complexes. The dimeric halogen-bridged metal tetracarbonyl halides are known to react in a similar fashion.

We thank the S.R.C. for a studentship (to J.G.D.).

(Received, March 8th, 1971; Com. 184.)

- ¹ D. M. Barnhart, C. N. Caughlan, and M. Ul-Haque, Inorg. Chem., 1968, 7, 1135.
 ² D. M. Barnhart, C. N. Caughlan, and M. Ul-Haque, Inorg. Chem., 1969, 8, 2768.
 ³ M. F. Farona and N. J. Bremer, J, Amer. Chem. Soc., 1966, 88, 3735.
 ⁴ M. F. Farona and K. F. Kraus, Inorg. Chem., 1970, 9, 1700.
 ⁵ G. Rouschias and G. Wilkinson, J. Chem. Soc. (A), 1967, 993.
 ⁶ M. G. B. Drew, D. G. Tisley, and R. A. Walton, Chem. Comm., 1970, 600.
 ⁷ B. F. G. Johnson, J. Lewis, J. R. Miller, B. H. Robinson, P. W. Robinson, and A. Wojcicki, J. Chem. Soc. (A), 1968, 522.