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Suininary The rates of chelate ring opening, (7O[H+] 
+0.6) x 10-G[Cr(H20),(SCH2C0,)’l, and closure, (70 
+O.S[H+]-l) x 10-7[Cr(H20),(02CCH2SH)~+], at  the 
Cr-S bond appear to parallel other substitutions at  CrIII 
with no apparent abnormalities associated with the 
mercaptan function and a 100-fold rate advantage for 
chelate closure by both paths. 

DIRECT rate measurements of either chelate ring closure at  

a transition-metal centre or substitution involving thiol 
donor groups are rare.1 In a rapid reaction between 
(en) ,Co(SCH,CO,) + and CrII, mercaptoacetate is trans- 
ferred to the CrIII product.2 The initial CrIII product, 
believed to be Cr(H20),(SCH2C02H)2+, undergoes succes- 
sive reactions to produce two new ions which were charac- 
terized by their electronic absorption spectrum and their 
elution characteristics from a Dowex 50W-X2 cation 
exchange column calibrated with comparable complexes of 
known charge. 
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The first of these secondary products elutes as a + 1  ion 
which, together with its absorption characteristics [Amax 
548 ( E  68.3), 437 (53.41, and 264 (5070) nm], supports its 
formulation as the chelate, Cr(H,O),(SCH,CO,)+. After 
elution this ion equilibrates with a third species which can 
be separated out as a +2  ion with spectral characteristics 
[Amax 568 ( E  26.0) and 411 (25.1) nm] expected for Cr(H,O), 
(0,CCH,SH)2+. A t  low acid concentrations this complex 
reverts back to the $ 1  ion. 

The interconversion together with the spectrophoto- 
metrically determined rate law a t  constant acidity can be 
described by equations (1)-(3). K, was determined to be 

Cr(H,0),(SCH,CO2)+ + H,O+ & 
k r  

Cr(H,O) ,(0,CCH2SH)2f, Kl (1) 

acid path in agreement with related previous analy~es.~ 
A particular point in its favour is that it preserves the 
previously noted rate advantage of approximately 10, for 
chelate closure compared to nionodentate ligation of 
Cr(H,O),(OH)2+ by HF and HN,.4 While K ,  exceeds the 
rate of water exchange for Cr(H,0),3+,7 a largely dissociative 
process does not seem unreasonable for substitution via K ,  
in view of the expected labilization by co-ordinated hydr- 
oxide.4 In contrast, the estimate for k ,  would require an 
unprecedented degree of assistance from the incoming 
group. While we cannot exclude this possibility rigor- 
ously i t  seems less likely. If a primarily dissociative 
mechanism is operative and our estimate of K ,  is accurate, 
the capacity for a pendant chelate function to “trap” a 
vacated co-ordination position suggests that our estimate of 
k ,  is a rough lower limit for water dissociation at  positions 
cis to the carboxylate in (A). 

d [Cr (H,O) (SCH,CO ,) +] /dt = 

- k f [Cr (H,O) 4( SCH2C0,) +] + kr  [Cr (H,O) 5( 02CCH,SH)2+] 
(2) 

(51 
10-3 by chromium analyses of the two fractions eluted from 
an exchange column charged with equilibrium mixtures. 
k f  and kr  were evaluated from kobs. a t  various acidities 
(0~010--0~20~) ,  25 “C and p = 0.25 (LiC10,-HCIO,), by 
the standard procedure3 yielding equation (4). 

Kf = (70[H+] + 0.6) x lob6, kr  = 

(70 + O-S[H+]-l) x 10v7 (4) 

C r  ( H 2 0  ),(O,CCH,SH 1 2 +  

1 1 x 2  
H+ + C r  ( H20 &(OH 1 (02CCHZSH 1’’ 

( A )  \ 
Cr (H20IL(O2CCH2S)+ 

4 
H +  + Cr(H2Ol5(O2CCH2Sl+ 

(8) 
x31 1 

C r ( H20 $( 02C C H S H 1 + (6) 
The first niicroscopically reversible path is interpreted as 

involving a net loss or gain of co-ordinated mercaptide 
through a transition state in which sulphur is protonated. 
Accordingly, mercaptoacetate enjoys a 30-250 fold rate 
advantage for chelate closure by RSH over that recorded 
for monodentate ligation of Cr(H20)6Sf by HF or HN,.4 
A ‘proton ambiguity4’ exists for interpretation of the second 
path in that two intermediates can possibly participate in 
ring closure [see equation (5) and (S)]. From extensible 
data for Cr(H20),(0,CMe)2+,5 we approximate K ,  as 
3 x 10-5, ignoring the question of acidity and labilizing 
capacity for cis vs. trnns positions since this estimate should 
provide a close upper limit for the most reactive form of 
(A). In view of a value of K = 6 x 10-l1 for deprotonation 
of mercaptoacetate,6 K ,  seems unlikely to be greater than 
lo-*. Combination of these estimates with the experi- 
mental rate constant yields the estimates: k ,  = 3 x 10-3 
s-1; k ,  > 9 s-1. 

We prefer mechanism (5) for ring closure by the inverse 

Finally, mercaptide dissociation by the acid-independent 
path is comparable in rate to that observed for the aquation 
of Cr(H2O),Cl2+ (2.7 x s - ~ ) . ~ “  In view of this and the 
greater expected basicity of co-ordinated mercaptide over 
co-ordinated fluoride, there is no basis for believing that the 
rate of acid-catalysed loss is not consistent with that for 
the acid-catalysed aquation of Cr(H,0),F2+ (1.36 x lo-* 
[IT+]) .4a Thus, our observations appear attributable to an 
expected rate advantage for chelate closure1 rather than to 
any unusual effects associated with substitution involving 
thiol groups, a t  least when the mechanism is primarily 
dissociative in character. 
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