¹⁹F Magnetic Resonance Spectroscopic Investigation of the Binding of 2-Deoxy-2-trifluoroacetamido-α-D-glucose to Lysozyme

By H. ASHTON, B. CAPON,* and R. L. FOSTER (Chemistry Department, Glasgow University, Glasgow W.2)

Summary The ¹⁹F n.m.r. signal of 2-deoxy-2-trifluoroacetamido- α -D-glucose, but not the β -anomer, shows an upfield shift in the presence of lysozyme.

It has been shown that when both anomers of 2-acetamido-2-deoxy-D-glucose are bound to lysozyme there are upfield shifts in the ¹H n.m.r. signals of the *N*-acetyl groups.¹⁻³ We find that there is a similar shift of the fluorine signal of 2-deoxy-2-trifluoroacetamido- α -D-glucose[†] but that certain

† M.p. 199–202°, $[\alpha]_D^{30} = 38.0 \rightarrow 13.6^\circ$ (c, 1.0 in H₂O).

significant differences suggest that this compound is bound differently to 2-acetamido-2-deoxy- α -D-glucose.

Mutarotated 2-deoxy-2-trifluoroacetamido-D-glucose has a similar inhibiting effect to 2-acetamido-2-deoxy-Dglucose on the rate of hydrolysis of the cell walls of *Micrococcus lysodeikticus* catalysed by lysozyme (Hens' egg white lysozyme from Boehringer). Thus under standard conditions this reaction was 24% inhibited in the presence of 2.5×10^{-2} M-2-acetamido-2-deoxy-D-glucose and 20%

inhibited in the presence of 1.8×10^{-2} M-2-deoxy-2-trifluoroacetamido-D-glucose. An aqueous mutarotated solution of 2-deoxy-2-trifluoroacetamido-D-glucose has ¹⁹F-signals at 339.6 and 312.0 Hz⁺ downfield from external trifluoroacetic acid arising from the α - and β -anomers respectively. The signal of the α -anomer moves upfield in the presence of lysozyme $(3.9 \times 10^{-3} \text{ M})$ and the extent of this shift depends on its concentration. The signal of the β -anomer moves downfield ca. 4 Hz and this shift is concentration independent. When tetra-N-acetylchitotetraose is added at a concentration 1.2 times that of the lysozyme the ¹⁹F signals of the α - and β -anomers appear 0.7 and 3.9 Hz downfield from their original position in the absence of enzyme. These downfield shifts presumably arise from a medium or bulk-susceptibility effect since downfield shifts were also found in the presence of chymotrypsin. The upfield shift of the α -anomer which is suppressed by tetra-N-acetylchitotetraose must therefore arise from binding in the active site.

The variation of the shift of 2-deoxy-2-trifluoroacetamido- α -D-glucose with its concentration was analysed by the method of Sykes³ and values of 78 Hz for the differences in chemical shift between unbound and bound 2-deoxy-2trifluoroacetamido- α -D-glucose and 9·1 × 10⁻³ mol 1⁻¹ for the binding constant were calculated. The analogous values for 2-acetamido-2-deoxy- α -D-glucose determined

under identical conditions were 87 Hz and 2.04×10^{-2} mol 1^{-1} . The similarity of the shift differences suggest that although 2-deoxy-2-trifluoroacetamido-a-D-glucose is bound in the active site it is situated differently from 2-acetamido-2-deoxy- α -D-glucose since if they were situated identically and experience identical changes in magnetic environment a much larger chemical shift should be found with the fluoro-compound. This conclusion is supported by the observation that methyl 2-deoxy-2-trifluoroacetamido-a-Dglucoside§ shows only a concentration-independent downfield shift in the presence of lysozyme whereas methyl 2-acetamido-2-deoxy- α -D-glucoside shows an upfield shift similar to that shown by the free sugar.^{1,2} Presumably the situation in which the N-trifluoroacetyl compound is bound leads to an unfavourable interaction with the enzyme when there is a methoxy-group at C-1.

Kent and Dwek have recently reported an investigation of the binding of 2-deoxy-2-fluoroacetamido- α -D-glucose to lysozyme using ¹⁹F n.m.r. spectroscopy. It is interesting that there is a downfield shift in the presence of the enzyme in contrast to our results with 2-deoxy-2-trifluoroacetamido- α -D-glucose.⁵

We thank Mr. J. Gall for measurements of the chemical shifts.

(Received, February 22nd, 1971; Com. 149.)

[‡] All measurements were carried out at 94·1 MHz. The signals were assigned on the basis of the ¹H and ¹⁹F n.m.r. spectra of the mutarotated and non-mutarotated N-trifluoroacetyl- α -D-glucosamine.

§ M.p. 192–193°; $[\alpha]_{D}^{25} = +84.6^{\circ}$ (c, 0.8 in H₂O).

¹E. W. Thomas, Biochem. Biophys. Res. Comm., 1966, 24, 611; 1967, 29, 628.

² M. A. Raftery, F. W. Dahlquist, S. I. Chan, and S. M. Parsons, J. Biol. Chem., 1968, 243, 4175; F. W. Dahlquist and M. A. Raftery, Biochemistry, 1968, 7, 3269.

⁸ B. D. Sykes, Biochemistry, 1969, 8, 1110; B. D. Sykes and C. Parravano, J. Biol. Chem., 1969, 244, 3900.

⁴ B. Capon and R. L. Foster, J. Chem. Soc. (C), 1970, 1654.

⁵ P. W. Kent and R. A. Dwek, Biochem. J., 1971, 121, 11P.